This study provided definitive information about circulation, prevalence and new emerging NPEV in the polio-endemic region of India, hence they should be considered in AFP surveillance. This would help in adopting and planning new strategies in post-PV eradication era in the country. This is the right time to prepare for the future tasks while we head towards a polio-free region.
Summary Almost all current genetically modified plant commercial products are derived from seeds. The first protein product made in leaves for commercial use is reported here. Leaf pectinases are validated here with eight liquid commercial microbial enzyme products for textile or juice industry applications. Leaf pectinases are functional in broad pH /temperature ranges as crude leaf extracts, while most commercial enzyme products showed significant loss at alkaline pH or higher temperature, essential for various textile applications. In contrast to commercial liquid enzymes requiring cold storage/transportation, leaf pectinase powder was stored up to 16 months at ambient temperature without loss of enzyme activity. Commercial pectinase products showed much higher enzyme protein PAGE than crude leaf extracts with comparable enzyme activity without protease inhibitors. Natural cotton fibre does not absorb water due to hydrophobic nature of waxes and pectins. After bioscouring with pectinase, measurement of contact‐angle water droplet absorption by the FAMAS videos showed 33 or 63 (leaf pectinase), 61 or 64 (commercial pectinase) milliseconds , well below the 10‐second industry requirements. First marker‐free lettuce plants expressing pectinases were also created by removal of the antibiotic resistance aadA gene. Leaf pectinase powder efficiently clarified orange juice pulp similar to several microbial enzyme products. Commercial pilot scale biomass production of tobacco leaves expressing different pectinases showed that hydroponic growth at Fraunhofer yielded 10 times lower leaf biomass per plant than soil‐grown plants in the greenhouse. Pectinase enzyme yield from the greenhouse plants was double that of Fraunhofer. Thus, this leaf‐production platform offers a novel, low‐cost approach for enzyme production by elimination of fermentation, purification, concentration, formulation and cold chain.
Phylogenetic analyses can give new insights into the evolutionary history of viruses, especially of viruses with segmented genomes. However, sequence information for many viral families or genera is still limited and phylogenies based on single or short genome fragments can be misleading. We report the first genetic analysis of all three genome segments of Wyeomyia group viruses Wyeomyia, Taiassui, Macaua, Sororoca, Anhembi and Cachoeira Porteira (BeAr328208) in the genus Orthobunyavirus of the family Bunyaviridae. In addition, Tucunduba and Iaco viruses were identified as members of the Wyeomyia group. Features of Wyeomyia group members that distinguish them from other viruses in the Bunyamwera serogroup and from other orthobunyaviruses, including truncated NSs sequences that may not counteract the host’s interferon response, were characterized. Our findings also suggest genome reassortment within the Wyeomyia group, identifying Macaua and Tucunduba viruses as M-segment reassortants that, in the case of Tucunduba virus, may have altered pathogenicity, stressing the need for whole-genome sequence information to facilitate characterization of orthobunyaviruses and their phylogenetic relationships.
Emerging and zoonotic pathogens pose continuing threats to human health and ongoing challenges to diagnostics. As nucleic acid tests are playing increasingly prominent roles in diagnostics, the genetic characterization of molecularly uncharacterized agents is expected to significantly enhance detection and surveillance capabilities. We report the identification of two previously unrecognized members of the family Orthomyxoviridae, which includes the influenza viruses and the tick-transmitted Thogoto and Dhori viruses. We provide morphological, serologic, and genetic evidence that Upolu virus (UPOV) from Australia and Aransas Bay virus (ABV) from North America, both previously considered potential bunyaviruses based on electron microscopy and physicochemical features, are orthomyxoviruses instead. Their genomes show up to 68% nucleotide sequence identity to Thogoto virus (segment 2; ϳ74% at the amino acid level) and a more distant relationship to Dhori virus, the two prototype viruses of the recognized species of the genus Thogotovirus. Despite sequence similarity, the coding potentials of UPOV and ABV differed from that of Thogoto virus, instead being like that of Dhori virus. Our findings suggest that the tick-transmitted viruses UPOV and ABV represent geographically distinct viruses in the genus Thogotovirus of the family Orthomyxoviridae that do not fit in the two currently recognized species of this genus. IMPORTANCE Upolu virus (UPOV) and Aransas Bay virus (ABV) are shown to be orthomyxoviruses instead of bunyaviruses, as previously thought.Genetic characterization and adequate classification of agents are paramount in this molecular age to devise appropriate surveillance and diagnostics. Although more closely related to Thogoto virus by sequence, UPOV and ABV differ in their coding potentials by lacking a proposed pathogenicity factor. In this respect, they are similar to Dhori virus, which, despite the lack of a pathogenicity factor, can cause disease. These findings enable further studies into the evolution and pathogenicity of orthomyxoviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.