One of the biggest challenges in the development and deployment of spoken dialogue systems is the design of the spoken language generation module. This challenge arises from the need for the generator to adapt to many features of the dialogue domain, user population, and dialogue context. A promising approach is trainable generation, which uses general-purpose linguistic knowledge that is automatically adapted to the features of interest, such as the application domain, individual user, or user group. In this paper we present and evaluate a trainable sentence planner for providing restaurant information in the MATCH dialogue system. We show that trainable sentence planning can produce complex information presentations whose quality is comparable to the output of a templatebased generator tuned to this domain. We also show that our method easily supports adapting the sentence planner to individuals, and that the individualized sentence planners generally perform better than models trained and tested on a population of individuals. Previous work has documented and utilized individual preferences for content selection, but to our knowledge, these results provide the first demonstration of individual preferences for sentence planning operations, affecting the content order, discourse structure and sentence structure of system responses. Finally, we evaluate the contribution of different feature sets, and show that, in our application, n-gram features often do as well as features based on higher-level linguistic representations.
BackgroundIdentification of discourse relations, such as causal and contrastive relations, between situations mentioned in text is an important task for biomedical text-mining. A biomedical text corpus annotated with discourse relations would be very useful for developing and evaluating methods for biomedical discourse processing. However, little effort has been made to develop such an annotated resource.ResultsWe have developed the Biomedical Discourse Relation Bank (BioDRB), in which we have annotated explicit and implicit discourse relations in 24 open-access full-text biomedical articles from the GENIA corpus. Guidelines for the annotation were adapted from the Penn Discourse TreeBank (PDTB), which has discourse relations annotated over open-domain news articles. We introduced new conventions and modifications to the sense classification. We report reliable inter-annotator agreement of over 80% for all sub-tasks. Experiments for identifying the sense of explicit discourse connectives show the connective itself as a highly reliable indicator for coarse sense classification (accuracy 90.9% and F1 score 0.89). These results are comparable to results obtained with the same classifier on the PDTB data. With more refined sense classification, there is degradation in performance (accuracy 69.2% and F1 score 0.28), mainly due to sparsity in the data. The size of the corpus was found to be sufficient for identifying the sense of explicit connectives, with classifier performance stabilizing at about 1900 training instances. Finally, the classifier performs poorly when trained on PDTB and tested on BioDRB (accuracy 54.5% and F1 score 0.57).ConclusionOur work shows that discourse relations can be reliably annotated in biomedical text. Coarse sense disambiguation of explicit connectives can be done with high reliability by using just the connective as a feature, but more refined sense classification requires either richer features or more annotated data. The poor performance of a classifier trained in the open domain and tested in the biomedical domain suggests significant differences in the semantic usage of connectives across these domains, and provides robust evidence for a biomedical sublanguage for discourse and the need to develop a specialized biomedical discourse annotated corpus. The results of our cross-domain experiments are consistent with related work on identifying connectives in BioDRB.
The CoNLL-2015 Shared Task is on Shallow Discourse Parsing, a task focusing on identifying individual discourse relations that are present in a natural language text. A discourse relation can be expressed explicitly or implicitly, and takes two arguments realized as sentences, clauses, or in some rare cases, phrases. Sixteen teams from three continents participated in this task. For the first time in the history of the CoNLL shared tasks, participating teams, instead of running their systems on the test set and submitting the output, were asked to deploy their systems on a remote virtual machine and use a web-based evaluation platform to run their systems on the test set. This meant they were unable to actually see the data set, thus preserving its integrity and ensuring its replicability. In this paper, we present the task definition, the training and test sets, and the evaluation protocol and metric used during this shared task. We also summarize the different approaches adopted by the participating teams, and present the evaluation results. The evaluation data sets and the scorer will serve as a benchmark for future research on shallow discourse parsing.
An emerging task in text understanding and generation is to categorize information as fact or opinion and to further attribute it to the appropriate source. Corpus annotation schemes aim to encode such distinctions for NLP applications concerned with such tasks, such as information extraction, question answering, summarization, and generation. We describe an annotation scheme for marking the attribution of abstract objects such as propositions, facts and eventualities associated with discourse relations and their arguments annotated in the Penn Discourse TreeBank. The scheme aims to capture the source and degrees of factuality of the abstract objects. Key aspects of the scheme are annotation of the text spans signalling the attribution, and annotation of features recording the source, type, scopal polarity, and determinacy of attribution.
The Penn Discourse Treebank (PDTB) was released to the public in 2008. It remains the largest manually annotated corpus of discourse relations to date. Its focus on discourse relations that are either lexically grounded in explicit discourse connectives or associated with sentential adjacency has not only facilitated its use in language technology and psycholinguistics but also has spawned the annotation of comparable corpora in other languages and genres.Given this situation, this paper has four aims: (1) to provide a comprehensive introduction to the PDTB for those who are unfamiliar with it; (2) to correct some wrong (or perhaps inadvertent) assumptions about the PDTB and its annotation that may have weakened previous results or the performance of decision procedures induced from the data; (3) to explain variations seen in the annotation of comparable resources in other languages and genres, which should allow developers of future comparable resources to recognize whether the variations are relevant to them; and (4) to enumerate and explain relationships between PDTB annotation and complementary annotation of other linguistic phenomena. The paper draws on work done by ourselves and others since the corpus was released.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.