Mitochondria, the dynamic organelles and power house of eukaryotic cells function as metabolic hubs of cells undergoing continuous cycles of fusion and fission. Recent findings have made it increasingly apparent that mitochondria essentially involved in energy production have evolved as principal intracellular signaling platforms regulating not only innate immunity but also inflammatory responses. Perturbations in mitochondrial dynamics, including fusion/fission, electron transport chain (ETC) architecture and cristae organization have now been actively correlated to modulate metabolic activity and immune function of innate and adaptive immune cells. Several newly identified mitochondrial proteins in mitochondrial outer membrane such as mitochondrial antiviral signaling protein (MAVS) and with mitochondrial DNA acting as danger-associated molecular pattern (DAMP) and mitochondrial ROS generated from mitochondrial sources have potentially established mitochondria as key signaling platforms in antiviral immunity in vertebrates and thereby orchestrating adaptive immune cell activations respectively. A thorough understanding of emerging and intervening role of mitochondria in toll-like receptor-mediated innate immune responses and NLRP3 inflammasome complex activation has gained lucidity in recent years that advocates the imposing functions of mitochondria in innate immunity. Fascinatingly, also how the signals stemming from the endoplasmic reticulum cooperate with the mitochondria to activate the NLRP3 inflammasome is now looked ahead as a stage to unravel as to how different mitochondrial and associated organelle stress responses cooperate to bring about inflammatory consequences. This has also opened avenues of research for revealing mitochondrial targets that could be exploited for development of novel therapeutics to treat various infectious, inflammatory, and autoimmune disorders. Thus, this review explores our current understanding of intricate interplay between mitochondria and other cellular processes like autophagy in controlling mitochondrial homeostasis and regulation of innate immunity and inflammatory responses.
Osteoporosis is a leading public health problem. Although a major cause in women is thought to be a decline in estrogen, it has recently been proposed that FSH or follitropin is required for osteoporotic bone loss. We examined the FSH receptor null mouse (FORKO mouse) to determine whether altered ovarian function could induce bone loss independent of FSH action. By 3 months of age, FORKO mice developed age-dependent declines in bone mineral density and trabecular bone volume of the lumbar spine and femur, which could be partly reversed by ovarian transplantation. Bilateral ovariectomy reduced elevated circulating testosterone levels in FORKO mice and decreased bone mass to levels indistinguishable from those in ovariectomized wild-type controls. Androgen receptor blockade and especially aromatase inhibition each produced bone volume reductions in the FORKO mouse. The results indicate that ovarian secretory products, notably estrogen, and peripheral conversion of ovarian androgen to estrogen can alter bone homeostasis independent of any bone resorptive action of FSH.
Although PDGF family members play a vital role in cell proliferation, motility and chemotaxis via activation of structurally similar alpha- and beta-receptors, little is known of their function in ovarian regulation and induction of tumorigenesis. Microarray analyses of ovaries from young follitropin receptor knockout (FORKO) mice that are prone to late ovarian tumors upon aging have revealed significant imbalances in PDGF ligands and receptors. We hypothesized that FSH/FSH-R signaling may exert effects partly by regulation of PDGF the family. To further understand their implications for ovarian tumorigenesis, we studied FORKO ovaries and hormonal regulation of the PDGF family members in normal mice, by using RT-PCR, Q-PCR, immunohistochemistry and western blotting. While PDGF-C and PDGFR-alpha increased, PDGFR-beta mRNA and protein decreased significantly in absence of FSH-R signaling. In the normal ovary, PDGFR-alpha was not affected by gonadotropin (eCG) stimulation but PDGF-C and PDGFR-beta decreased. Administration of estradiol decreased PDGF and their receptors. To further probe the differential regulation of PDGF family members by eCG and estradiol, we co-administered eCG with estrogen antagonist, ICI 182780. Increase in PDGFR-alpha in the absence of estradiol suggests direct effects of FSH signaling. During the estrous cycle in mice PDGF-C, PDGF-D and PDGFR-alpha mRNA levels were higher at the proestrous. By IHC, we report for the first time the localization of PDGF-C, PDGFR-alpha and PDGFR-beta protein in mouse ovarian compartments including the surface epithelium that is also altered in mutants. Immunostaining of PDGFRs increased as the follicle developed to preantral stage and declined thereafter. Thus, FSH modulates PDGF family members, partly via E2, suggesting that loss of FSH-R signaling causes an imbalance of PDGF family members predisposing the abnormal ovarian follicular environment for inducing tumorigenesis in aging FORKO mice.
We have previously shown that follicle-stimulating hormone receptor haploinsufficient mice undergo early reproductive senescence with alterations in ovarian structures. The objective of this study was to treat aging (7-8 months) +/- follicle-stimulating hormone receptor mice that are destined for reproductive failure with 2 selected antiandrogens, curcumin and flutamide, to counteract deleterious effects of mild hyperandrogenemia on the ovary and metabolism. Both compounds significantly downregulated the expression of ovarian androgen receptor protein and simultaneously reduced cyclooxygenase 2 protein in the ovary. Immunolocalization of bone morphogenetic protein-15 in the ovary was enhanced considerably by curcumin and partially by flutamide in treated mice. Improved structural changes were evident in zona pellucida of curcumin-treated ovaries. Flutamide reduced p450c-17 (cyp-17 protein) enzyme expression in thecal/interstitial cells, whereas increased expression of 3beta-hydroxysteroid dehydrogenase in thecal cells and granulosa-lutein cells of big follicles was apparent in curcumin-treated ovaries. Reduction in abdominal adiposity was greater in flutamide-treated mice. Taken together, our study allows the following conclusions: changes in ovarian histology and oocyte components as well as adipose tissue indicate the potential for reversing ovarian decline and metabolism because of mild hyperandrogenemia that occurs with aging in follicle-stimulating hormone receptor haploinsufficienct mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.