Parathyroid hormone (PTH) plays a central role in the regulation of serum calcium and phosphorus homeostasis, while parathyroid hormone-related protein (PTHrP) has important developmental roles. Both peptides signal through the same G protein-coupled receptor, the PTH/PTHrP or PTH type 1 receptor (PTH1R). PTHrP, normally a secreted protein, also contains a nuclear localization signal (NLS) that in vitro imparts functionality to the protein at the level of the nucleus. We investigated this functionality in vivo by introducing a premature termination codon in Pthrp in ES cells and generating mice that express PTHrP (1-84), a truncated form of the protein that is missing the NLS and the C-terminal region of the protein but can still signal through its cell surface receptor. Mice homozygous for the knock-in mutation (Pthrp KI) displayed retarded growth, early senescence, and malnutrition leading postnatally to their rapid demise. Decreased cellular proliferative capacity and increased apoptosis in multiple tissues including bone and bone marrow cells were associated with altered expression and subcellular distribution of the senescenceassociated tumor suppressor proteins p16 INK4a and p21 and the oncogenes Cyclin D, pRb, and Bmi-1. These findings provide in vivo experimental proof that substantiates the biologic relevance of the NLS and C-terminal portion of PTHrP, a polypeptide ligand that signals mainly via a cell surface G protein-coupled receptor.ageing ͉ nucleus ͉ osteoporosis ͉ PTHrP ͉ senescence
Osteoporosis is a leading public health problem. Although a major cause in women is thought to be a decline in estrogen, it has recently been proposed that FSH or follitropin is required for osteoporotic bone loss. We examined the FSH receptor null mouse (FORKO mouse) to determine whether altered ovarian function could induce bone loss independent of FSH action. By 3 months of age, FORKO mice developed age-dependent declines in bone mineral density and trabecular bone volume of the lumbar spine and femur, which could be partly reversed by ovarian transplantation. Bilateral ovariectomy reduced elevated circulating testosterone levels in FORKO mice and decreased bone mass to levels indistinguishable from those in ovariectomized wild-type controls. Androgen receptor blockade and especially aromatase inhibition each produced bone volume reductions in the FORKO mouse. The results indicate that ovarian secretory products, notably estrogen, and peripheral conversion of ovarian androgen to estrogen can alter bone homeostasis independent of any bone resorptive action of FSH.
To promote bone formation is one of the fundamental strategies in osteoporosis treatment and fractures repair. As one of the stimulators on bone formation, osteogenic growth peptide (OGP) increases both proliferation and differentiation of the osteoblasts in vitro and in vivo, in which osteoprotegerin (OPG) has been suggested being involved. In this study, we evaluated the effects of OGP on bone marrow mesenchymal stem cells (MSCs) from OPG-deficient mice in vitro by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, alkaline phosphatase (ALP) activity assay, real-time polymerase chain reaction, and western blot analysis. Results showed that OGP stimulated MSC proliferation and increased the expression of CDK2 and cyclin A in MSCs both at mRNA and protein levels. However, no differentiative effect of OGP was shown as ALP activity and the expression levels of Runx2 and Osterix were not increased significantly by OGP. Our study suggested that OGP may increase the bone formation in OPG-deficient mice by stimulating MSC proliferation rather than differentiation, and probably by triggering CDK2/cyclin A pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.