Software requirements specification (SRS) is an essential part of software development. SRS has two features: functional requirements (FR) and non-functional requirements (NFR). Functional requirements define the needs that are directly in contact with stakeholders. Non-functional requirements describe how the software provides the means to carry out functional requirements. Non-functional requirements are often mixed with functional requirements. This study compares four primarily used machine learning methods for classifying functional and nonfunctional requirements. The contribution of our research is to use the PROMISE and SecReq (ePurse) dataset, then classify them by comparing the FastText+SVM, FastText+CNN, SVM, and CNN classification methods. CNN outperformed other methods on both datasets. The accuracy obtained by CNN on the PROMISE dataset is 99% and on the Seqreq dataset is 94%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.