Positron emission tomography (PET) and prompt gamma (PG) detection are promising proton therapy monitoring modalities. Fast calculation of the expected distributions is desirable for comparison to measurements and to develop/train algorithms for automatic treatment error detection. A filtering formalism was used for positron-emitter predictions and adapted to allow for its use for the beamline of any proton therapy centre. A novel approach based on a filtering formalism was developed for the prediction of energy-resolved PG distributions for arbitrary tissues. The method estimates PG yields and their energy spectra in the entire treatment field. Both approaches were implemented in a research version of the RayStation treatment planning system. The method was validated against PET monitoring data and Monte Carlo simulations for four patients treated with scanned proton beams. Longitudinal shifts between profiles from analytical and Monte Carlo calculations were within -1.7 and 0.9 mm, with maximum standard deviation of 0.9 mm and 1.1 mm, for positron-emitters and PG shifts, respectively. Normalized mean absolute errors were within 1.2 and 5.3%. When comparing measured and predicted PET data, the same more complex case yielded an average shift of 3 mm, while all other cases were below absolute average shifts of 1.1 mm. Normalized mean absolute errors were below 7.2% for all cases. A novel solution to predict positron-emitter and PG distributions in a treatment planning system is proposed, enabling calculation times of only a few seconds to minutes for entire patient cases, which is suitable for integration in daily clinical routine.
BackgroundClinical evidence has demonstrated that proton therapy can achieve comparable tumor control probabilities compared to conventional photon therapy but with the added benefit of sparing healthy tissues. However, proton therapy is sensitive to inter‐fractional anatomy changes. Online pre‐fraction evaluation can effectively verify proton dose before delivery to patients, but there is a lack of guidelines for implementing this workflow.PurposeThe purpose of this study is to develop a cone‐beam CT‐based (CBCT) online evaluation framework for proton therapy that enables knowledge transparency and evaluates the efficiency and accuracy of each essential component.MethodsTwenty‐three patients with various lesion sites were included to conduct a retrospective study of implementing the proposed CBCT evaluation framework for the clinic. The framework was implemented on the RayStation 11B Research platform. Two synthetic CT (sCT) methods, corrected CBCT (cCBCT), and virtual CT (vCT), were used, and the ground truth images were acquired from the same‐day deformed quality assurance CT (dQACT) for the comparisons. The evaluation metrics for the framework include time efficiency, dose‐difference distributions (gamma passing rates), and water equivalent thickness (WET) distributions.ResultsThe mean online CBCT evaluation times were 1.6 ± 0.3 min and 1.9 ± 0.4 min using cCBCT and vCT, respectively. The dose calculation and deformable image registration dominated the evaluation efficiency, and accounted for 33% and 30% of the total evaluation time, respectively. The sCT generation took another 19% of the total time. Gamma passing rates were greater than 91% and 97% using 1%/1 mm and 2%/2 mm criteria, respectively. When the appropriate sCT was chosen, the target mean WET difference from the reference were less than 0.5 mm. The appropriate sCT method choice determined the uncertainty for the framework, with the cCBCT being superior for head‐and‐neck patient evaluation and vCT being better for lung patient evaluation.ConclusionsAn online CBCT evaluation framework was proposed to identify the use of the optimal sCT algorithm regarding efficiency and dosimetry accuracy. The framework is extendable to adopt advanced imaging methods and has the potential to support online adaptive radiotherapy to enhance patient benefits. It could be implemented into clinical use in the future.
Purpose: To investigate the feasibility of using cone-beam computed tomography (CBCT)-derived synthetic CTs to monitor the daily dose and trigger a plan review for adaptive proton therapy (APT) in head and neck cancer (HNC) patients. Methods: For 84 HNC patients treated with proton pencil-beam scanning (PBS), same-day CBCT and verification CT (vfCT) pairs were retrospectively collected. The ground truth CT (gtCT) was created by deforming the vfCT to the same-day CBCT, and it was then used as a dosimetric baseline and for establishing plan review trigger recommendations. Two different synthetic CT algorithms were tested; the corrected CBCT (corrCBCT) was created using an iterative image correction method and the virtual CT (virtCT) was created by deforming the planning CT to the CBCT, followed by a low-density masking process. Clinical treatment plans were recalculated on the image sets for evaluation. Results: Plan review trigger criteria for adaptive therapy were established after closely reviewing the cohort data. Compared to the vfCT, the corrCBCT and virtCT reliably produced dosimetric data more similar to the gtCT. The average discrepancy in D99 for high-risk clinical target volumes (CTV) was 1.1%, 0.7%, and 0.4% and for standard-risk CTVs was 1.8%, 0.5%, and 0.5% for the vfCT, corrCBCT, and virtCT, respectively. Conclusion: Streamlined APT has been achieved with the proposed plan review criteria and CBCT-based synthetic CT workflow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.