ABSTRACT:Troglitazone (TGZ), the first glitazone used for the treatment of type II diabetes mellitus and removed from the market for liver toxicity, was shown to bind covalently to microsomal protein and glutathione (GSH) following activation by cytochrome P450 (P450).
Nuclear magnetic resonance (NMR) spectroscopy has traditionally been considered as an indispensable tool in elucidating structures of metabolites. With the advent of Fourier transform (FT) spectrometers, along with improvements in software and hardware (such as high-field magnets, cryoprobes, versatile pulse sequences, and solvent suppression techniques), NMR is increasingly being considered as a critical quantitative tool, despite its lower sensitivity as compared to mass spectrometry. A specific quantitative application of NMR is in determining the concentrations of biologically isolated metabolites, which could potentially be used as reference standards for further quantitative work by liquid chromatography/mass spectrometry. With the recent demands from regulatory agencies on quantitative information on metabolites, it is proposed that NMR will play a significant role in strategies aimed at addressing metabolite coverage in toxicological species. Traditionally, biologically isolated metabolites have not been considered as a way of generating "reference standards" for further quantitative work. However, because of the recent FDA guidance on safety testing of metabolites, one has to consider means of authenticating and quantitating biologically or nonbiologically generated metabolites. 1H NMR is being proposed as the method of choice, as it is able to be used as both a qualitative and a quantitative tool, hence allowing structure determination, purity check, and quantitative measurement of the isolated metabolite. In this publication, the application of NMR as a powerful and robust analytical technique in determining the concentrations of in vitro or in vivo isolated metabolites is discussed. Furthermore, to demonstrate the reliability and accuracy of metabolite concentrations determined by NMR, validation and cross-validation with gravimetric and mass spectrometric methods were conducted.
The recent guidance on "Safety Testing of Drug Metabolites" issued by the U.S. Food and Drug Administration, Center for Drug Evaluation and Research (CDER) has highlighted the importance of identifying and characterizing drug metabolites as early as possible in drug discovery and development. Furthermore, upon identifying significant circulating metabolites in human plasma, it has become important to demonstrate that these metabolites are present at an equal or greater exposure level (area under the curve, AUC) in any one of the preclinical species used in safety testing. Frequently, synthetic standards of metabolites are not available, and hence, obtaining their AUC values can be a challenge. In this report, we demonstrate how combinations of nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography/ultraviolet/mass spectrometry (LC/UV/MS), and plasma pooling methods were used to obtain reliable AUC values of metabolites present in the plasma of preclinical species from short-term safety studies. Plasma pooling methods were compared to the traditional approaches of obtaining quantitative information on the levels of circulating metabolites in preclinical species. The exposure values obtained via sample pooling were comparable to those obtained by traditional methods of analyzing samples individually. In the absence of synthetic chemical standards, calculations of AUC values of metabolites, using either sample pooling or traditional approaches, were achieved through the use of UV detectors. In cases where the UV properties of metabolites were significantly different from their parent compounds, NMR was used as a quantitative tool to obtain exposure values. NMR was found to be useful in quantitating biologically produced metabolites, which could subsequently be used as reference compounds for further quantitative studies. The limitations of UV detectors to obtain exposure estimates are discussed. A practical solution is presented that will enable us to obtain a quantitative assessment of metabolite exposure in humans and coverage in toxicology species, hence, circumventing the use of radiolabeled compounds or authentic chemically synthesized standards of metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.