Let $\mathcal{A}$ denote the class of normalized analytic functions in the unit disc $ U $ and $ P_{\gamma} (\alpha, \beta) $ consists of $ f \in \mathcal{A} $ so that$ \exists ~\eta \in \mathbb{R}, \quad \Re \bigg \{e^{i\eta} \bigg [(1-\gamma) \Big (\frac{f(z)}{z}\Big )^{\alpha}+ \gamma \frac{zf'(z)}{f(z)} \Big (\frac{f(z)}{z}\Big )^{\alpha} - \beta\bigg ]\bigg \} > 0. $ In the present paper we shall investigate the integral transform$ V_{\lambda, \alpha}(f)(z) = \bigg \{\int_{0}^{1} \lambda(t) \Big (\frac{f(tz)}{t}\Big )^{\alpha}dt\bigg \}^{\frac{1}{\alpha}}, $ where $ \lambda $ is a non-negative real valued function normalized by $ \int_{0}^{1}\lambda(t) dt=1 $. Actually we aim to find conditions on the parameters $ \alpha, \beta, \gamma, \beta_{1}, \gamma_{1} $ such that $ V_{\lambda, \alpha}(f) $ maps $ P_{\gamma}(\alpha, \beta) $ into $ P_{\gamma_{1}}(\alpha, \beta_{1}) $. As special cases, we study various choices of $ \lambda(t) $, related to classical integral transforms.
Abstract. Making use of a linear operator, we introduce certain subclass of meromorphically univalent functions in the punctured unit disk and study its properties including some inclusion results, coefficient and distortion problems. Our result generalize many results known in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.