“…Let q 1 (z) and q 2 (z) be convex in U, q 1 (0) = q 2 (0) = 1 and q 2 (z) satisfies(9), andα ∈ C, Re α > 0. If f (z) ∈ Σ p such that L λ p,n (a, c + 1)f (z) L λ p,n (a, c)f (z)∈ H(q(0), 1) Q, andR(α, n, p, λ, a, c)is univalent in U and satisfiesq 1 (z) + αzq 1 (z) ≺ R(α, n, p, λ, a, c) ≺ q 2 (z) + αzq 2 (z),where R(α, n, p, λ, a, c) is given by (11), thenq 1 (z) ≺ L λ p,n (a, c + 1)f (z) L λ p,n (a, c)f (z) ≺ q 2 (z)and q 1 (z), q 2 (z) are the best subordinant and the best dominant, respectively.Remark.Combining Corollaries 1, 2, we obtain the corresponding sandwich results for the operators L λ p,n (a, c + 1)f (z) L λ p,n (a, c)f (z)…”