Liquid scintillator detectors are widely used in modern neutrino studies. The unique optical properties of semiconducting nanocrystals, known as quantum dots, offer intriguing possibilities for improving standard liquid scintillator, especially when combined with new photodetection technology. Quantum dots also provide a means to dope scintillator with candidate isotopes for neutrinoless double beta decay searches. In this work, the first studies of the scintillation properties of quantum-dot-doped liquid scintillator using both UV light and radioactive sources are presented.
Developments in machine learning promise to ameliorate some of the challenges of modeling complex physical systems through neural-network-based surrogate models. High-intensity, short-pulse lasers can be used to accelerate ions to mega-electronvolt energies, but to model such interactions requires computationally expensive techniques such as particle-in-cell simulations. Multilayer neural networks allow one to take a relatively sparse ensemble of simulations and generate a surrogate model that can be used to rapidly search the parameter space of interest. In this work, we created an ensemble of over 1,000 simulations modeling laser-driven ion acceleration and developed a surrogate to study the resulting parameter space. A neural-network-based approach allows for rapid feature discovery not possible for traditional parameter scans given the computational cost. A notable observation made during this study was the dependence of ion energy on the pre-plasma gradient length scale. While this methodology harbors great promise for ion acceleration, it has ready application to all topics in which large-scale parameter scans are restricted by significant computational cost or relatively large, but sparse, domains.
The neutron imaging system at the National Ignition Facility is an important diagnostic tool for measuring the two-dimensional size and shape of the source of neutrons produced in the burning deuterium-tritium plasma during the stagnation phase of inertial confinement fusion implosions. Very few two-dimensional projections of neutron images are available to reconstruct the three-dimensional neutron source. In this paper, we present a technique that has been developed for the 3D reconstruction of neutron and x-ray sources from a minimal number of 2D projections. We present the detailed algorithms used for this characterization and the results of reconstructed sources from experimental data collected at Omega.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.