1-aminocyclopropane-1-carboxylate deaminase (ACCD)-producing endophytic Streptomyces sp. GMKU 336 and its ACCD-deficient mutant were inoculated into Thai jasmine rice Khao Dok Mali 105 cultivar (Oryza sativa L. cv. KDML105) under salt stress (150 mM NaCl) conditions. The results clearly indicated that Streptomyces sp. GMKU 336 significantly increased plant growth, chlorophyll, proline, K+, Ca+, and water contents; but decreased ethylene, reactive oxygen species (ROS), Na+, and Na+/K+ ratio when compared to plants not inoculated and those inoculated with the ACCD-deficient mutant. Expression profiles of stress responsive genes in rice in association with strain GMKU 336 were correlated to plant physiological characteristics. Genes involved in the ethylene pathway, ACO1 and EREBP1, were significantly down-regulated; while acdS encoding ACCD in Streptomyces sp. GMKU 336 was up-regulated in vivo. Furthermore, genes involved in osmotic balance (BADH1), Na+ transporters (NHX1 and SOS1), calmodulin (Cam1-1), and antioxidant enzymes (CuZn-SOD1 and CATb) were up-regulated; whereas, a gene implicated in a signaling cascade, MAPK5, was down-regulated. This work demonstrates the first time that ACCD-producing Streptomyces sp. GMKU 336 enhances growth of rice and increases salt tolerance by reduction of ethylene via the action of ACCD and further assists plants to scavenge ROS, balance ion content and osmotic pressure.
1-Aminocyclopropane-1-carboxylate (ACC) deaminase is a plant growth promoting (PGP) trait found in beneficial bacteria including streptomycetes and responsible for stress modulation. The ACC deaminase gene, acdS, of S. venezuelae ATCC 10712 was cloned into an expression plasmid, pIJ86, to generate S. venezuelae/pIJ86-acdS. Expression of acdS and production of ACC deaminase of S. venezuelae/pIJ86-acdS were significantly higher than the unmodified strain. The ACC deaminase-overexpressing mutant and the wild type control were inoculated into Thai jasmine rice (Oryza sativa L. cv. KDML105) under salt stress conditions. S. venezuelae on its own augmented rice growth and significantly increased more tolerance to salinity by reduction of ethylene, reactive oxygen species (ROS) and Na+ contents, while accumulating more proline, total chlorophyll, relative water content (RWC), malondialdehyde (MDA), and K+ than those of uninoculated controls. The overproducer did not alter chlorophyll, RWC, or MDA further–while it did boost more shoot weight and elongation, and significantly regulated salt tolerance of rice by increasing proline and reducing ethylene and Na+ contents further than that of the wild type. This work is the first illustration of the beneficial roles of S. venezuelae to enhance plant fitness endophytically by promotion of growth and salt tolerance of rice.
Streptomyces venezuelae ATCC 10712 produces chloramphenicol in small amounts. To enhance chloramphenicol production, two genes, aroB and aroK, encoding rate-limiting enzymes of the shikimate pathway were overexpressed using the expression vector pIJ86 under the control of the strong constitutive ermE* promoter. The recombinant strains, S. venezuelae/pIJ86-aroB and S. venezuelae/pIJ86-aroK, produced 2.5- and 4.3-fold greater amounts respectively of chloramphenicol than wild type at early stationary phase of growth. High transcriptional levels of aroB and aroK genes were detected at the early exponential growth of both recombinant strains and consistent with the enhanced expression of pabB gene encoding an early enzyme in chloramphenicol biosynthesis. The results suggested that the increment of carbon flux was directed towards intermediates in the shikimate pathway required for the production of chorismic acid, and consequently resulted in the enhancement of chloramphenicol production. This work is the first report of a convenient genetic approach to manipulate primary metabolite genes in S. venezuelae in order to increase chloramphenicol production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.