Previous studies have suggested that Plasmodium falciparum (P. falciparum) specific IgE in the form of immune complexes crosslinking the low-affinity receptor (CD23) on monocyte results in tumor necrosis factor (TNF)-α and nitric oxide (NO) production. However, the roles of these parameters in severity and immune protection are still unclear. This study aimed to determine the association between CD23 expression on monocytes, plasma soluble CD23 (sCD23), total IgE, malaria-specific IgE and IgG, and TNF-α levels in P. falciparum infected patients. We evaluated 64 uncomplicated (UC) and 25 severe patients (S), admitted at the Hospital for Tropical Diseases, Mahidol University, and 34 healthy controls (C) enrolled in 2001. Flow cytometry and enzyme linked immunosorbent assays (ELISA) demonstrated that trends of the CD23 expression, levels of sCD23 and specific IgE were higher in the S group as compared to those in the UC and C groups. Plasma levels of P. falciparum specific IgE in the UC (p=0.011) and S groups (p=0.025) were significantly higher than those in C group. In contrast the TNF-α levels tended to be higher in the UC than those in the S (p=0.343) and significantly higher than those in C (p=0.004) groups. The specific IgG levels in UC were significantly higher than those in S and C (p<0.001) groups. At admission, a strong significant negative correlation was found between specific IgG and sCD23 (r=-0.762, p=0.028), and TNF-α and IgE-IgG complexes (r=-0.715, p=0.002). Significant positive correlations between levels of specific IgE and TNF-α (r=0.575, p=0.010); and sCD23 (r=0.597, p=0.000) were also observed. In conclusion, our data suggest that CD23 expression and malaria-specific IgE levels may be involved in the severity of the disease while TNF-α and the malaria-specific IgG may correlate with protection against falciparum malaria.
BackgroundThird (infective)-stage Gnathostoma spinigerum larvae (L3) mainly cause human gnathostomiasis. G. spinigerum L3 migrate throughout the subcutaneous tissues, vital organs, and central nervous system and can cause various pathogenesis including sudden death. Interestingly, G. spinigerum L3 can survive and evade host cellular immunity for months or years. The effects of G. spinigerum excretory-secretory (ES) products involved in larval migration and immune-evasive strategies are unknown. Monocytes are innate immune cells that act as phagocytic and antigen-presenting cells and also play roles against helminthic infections via a complex interplay between other immune cells. Fc gamma receptor I (FcγRI) is a high-affinity receptor that is particularly expressed on monocytes, macrophages, and dendritic cells. The cross-linking of FcγRI and antigen-antibody complex initiates signal transduction cascades in phagocytosis, cytokine production, and antibody-dependent cell-mediated cytotoxicity (ADCC). This study investigated whether ES antigen (ESA) from G. spinigerum L3 affects monocyte functions.ResultsCultures of normal peripheral blood mononuclear cells (PBMC) separated from healthy buffy coats were used as a human immune cell model. ESA was prepared from G. spinigerum L3 culture. Using Real-Time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), the effect of ESA to down-regulate FcγRI mRNA expression in monocytes during 90 min of observation was not well delineated. Flow cytometry analysis revealed a significant phenotypic-decreased FcγRI expression on the monocyte surface at 12 hours (h) of cultivation with the ESA (p = 0.033). Significantly reduced monocyte-mediated phagocytosis capacity was consistently observed after 12 h of ESA pretreatment (p = 0.001).ConclusionsOur results suggest that G. spinigerum ESA modulates monocyte function via depletion of FcγRI expression. This study provides preliminary information for future in-depth studies to elucidate mechanisms of the immune-evasive strategy of G. spinigerum larvae.Electronic supplementary materialThe online version of this article (doi:10.1186/s41182-016-0005-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.