Miniplate plays an important role as one of the implant components used as a rehabilitation device for a post-fracture finger. In this study, an analysis was carried out to determine the strength of the miniplate design made from Ti-6Al-4V titanium alloy material. Simulation and analysis were carried out using the finite element method. The given input for modeling tensile and bending loads determined von Mises stress, kinetic energy, strain energy, and internal energy. The analysis showed that uneven von Mises stress and strain distribution have occurred. The critical concentration of stresses was located at the center of the miniplate and these values were a lot lower than the yield stress of Ti-6Al-4V.
This study analyzed the design performance of SS316L-based plate implant for fibula restoration using a Finite Element Analysis approach. The simulated model design has dimensions of 35 x 5 x 1.5 mm and five holes with 2-3 configuration. The results of the bending test simulation showed that the values for both displacement and Von Mises stress that occurred (0.008 mm and 116 MPa of each) were still considerably below the yield stress of the SS316L material. The same results were also shown in the tensile test simulation, although the clamping setting on the plate was changed on the other side. From this finite element analysis approach, the SS316L-based five-hole plate implant design has a fairly good strength performance as a fibular bone-implant restoration product.
Abstract. The use of alternative energy source is expected to reduce fossil energy consumption and exhaust emissions. One of the non-fossil energy alternatives introduced for vehicles is bioethanol, it can produce in a simple way and cheap. Low-grade bioethanol has characteristics that depend on exhaust emissions generated. Low-grade bioethanol can be used as a substitute or mixture of fuel. The mixture of bioethanol and gasoline gives an effect to the increase of octane number and reduces the emission of CO2 produces. To get a more optimum effect on fuel consumption and emission, the oxygenated additive can be added to the fuel mixture. In this study, the effect of fuel consumption and emission was carried out by comparison of E5, E10, E15 without additive and with additive oxygenated cycloheptanol. The test will be performed by the method of calculating the amount of fuel consumption against the time to get specific fuel consumption. Emission test will be performed in single cylinder spark-ignition (SI) engine 150cc premix fuel with 100% opening throttle position connected to the gas analyzer in variation speed engine to see the emission gas. This study aims to obtain reduce the emission gas (CO2 and CO) and fuel consumption with the addition of the oxygenated additive. IntroductionThe limited resources of fossil energy and the increasing need for fuel causes the necessity to finding another renewable energy source [1]. In addition, the increased fuel consumption that occurs today will cause the amount of exhaust emission generated increased and this will have an adverse impact on the environmental. Because of that problem, the use of regenerative fuels has been developed lately [2, 3]. By utilizing alternative energy that is environmentally friendly and widely available in nature is expected to be a solution that addresses current problems. One of the alternative energy developed today is biofuel. Biofuel can be used as a substitute for fuel or mixture on fuel [4]. Biofuel consists of several types including bioethanol, biodiesel, biobutanol, bio-methanol, biogas, biohydrogen, and vegetable oil. Currently, bioethanol and biodiesel are being developed to be used as fuel for the future.Bioethanol is one of the renewable fuel sources derived from biomass product. Bioethanol is widely produced from agricultural residue (such as bagasse, rice straw, corn straw, and wheat straw), industrial waste starch processing and lignocellulosic biomass (such as agricultural residues, woody biomass, algae, and industrial solid waste). Indonesia is a country that has abundant raw materials in the manufacture of bioethanol. Looking for the raw material is widely available, bioethanol can be produced on a large scale [5,6].
Pemanfaatan energi terbarukan di Indonesia masih tergolong rendah dibandingkan dengan sumber energi tak terbarukan dari minyak bumi, batu bara, maupun gas alam. Dengan jumlah energi tak terbarukan yang terbatas mendorong untuk mengembangkan penggunaan bahan bakar alternatif. Saat ini bioetanol merupakan salah satu bahan bakar alternatif yang sedang dikembangkan sebagai pengganti maupun campuran bahan bakar bensin, yang dikenal sebagai etanol anhidrat yang memiliki konsentrasi diatas 96%. Campuran bioetanol memberikan pengaruh terhadap peningkatan bilangan oktan dan mampu mengurangi emisi gas buang yang dihasilkan. Untuk mendapatkan efek yang lebih optimal dalam konsumsi bahan bakar zat aditif seperti oxygenated cyclohexanol ditambahkan pada campuran bahan bakar. Studi dilakukan pada perbandingan bahan bakar E5 sampai E15 dengan penggunaan aditif tersebut. Pengujian konsumsi bahan bakar dilakukan pada mesin satu silinder spark ignition dengan posisi bukaan throttle 100%. Terdapat sensor pada bagian tanki bahan bakar untuk menghitung specific fuel consumption (SFC) dengan variasi kecepatan mesin. Penelitian ini bertujuan untuk melihat pengaruh penambahan zat aditif pada campuran bahan bakar terhadap konsumsi bahan bakar.Kata kunci: bensin; bioetanol; emisi gas buang; zat aditif.The use of renewable energy in Indonesia is still low compared to non-renewable energy sources from petroleum, coal, and natural gas. The limited amount of non-renewable energy encourages developing the use of alternative fuels. Currently, bioethanol is an alternative fuel that is being developed as a substitute or mixture of gasoline fuel, known as anhydrous ethanol which has a concentration above 96%. The bioethanol mixture has an effect on increasing the octane number and is able to reduce the resulting exhaust gas emissions. To get a more optimal effect on fuel consumption, additives such as oxygenated cyclohexanol are added to the fuel mixture. Studies were carried out on the comparison of fuel E5 to E15 with the use of these additives. The fuel consumption test was carried out on a single-cylinder spark-ignition engine with a 100% throttle opening position. There is a sensor on the fuel tank to calculate the specific fuel consumption (SFC) with variations in engine speed. This study aims to determine the effect of adding additives to the fuel mixture on fuel consumption.Keywords : fuel; bioethanol; exhaust gas emissions; additives. DAFTAR RUJUKANAbikusna, S., Sugiarto, B., & Suntoro D. (2017). Low Grade Bioethanol for Fuel Mixing on Gasoline Engine Using Distillation Process. in AIP Conference Proceedings. AIP Publishing.Abikusna, S. (2018). The Effect of Additive on Combustion Characteristics and Cycle to Cycle Variations on SI Engine Fueled by Gasoline and Bioethanol, Technology organic and inorganic substances. P. 27-37. Doi: 10.15587/1729-4061.2018.147585Abikusna, S., B. Sugiarto, & Zulfan, A. (2017). Fuel consumption and emission on fuel mixer low-grade bioethanol fuelled motorcycle. in MATEC Web of Conferences. EDP Sciences.Costa, R. C., & Sodré, J.R. (2011). Compression ratio effects on an ethanol/gasoline fuelled engine performance. Applied Thermal Engineering, 31(2): p. 278-283.de Melo, T.C.C., et al., 2012. Hydrous ethanol–gasoline blends–Combustion and emission investigations on a Flex-Fuel engine. Fuel, 97: p. 796-804.Costa, R.C. & Sodré, J.R. (2009) . Hydrous Ethanol Vs. Gasoline-Ethanol Blend: Engine Performance and Emissions. International Journal of FuelGao, J. D. J., & Huang, Z. (2007). Spray Properties of Alternative Fuels: A Comparative Analysis of Ethanol–Gasoline Blends and Gasoline. Fuel. 86(10): p. 1645-1650.Keith, O., & Trevor, C. (1995). Automotive fuels reference book. Society of Automotive Engineers, Inc. Warrendale, p. 487.Gholamhassan, N. B. G., Yusaf, T. Safieddin, S. M., & Ardebili, R.M. (2015). Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline-ethanol blended fuels using response surface methodology. Elsevier, energy xxx: p. 15.Jang, S. H., & Choi, J. H. (2016). Comparison of fuel consumption and emission characteristics of various marine heavy fuel additives. Applied Energy, 179, 36–44. https://doi.org/10.1016/j.apenergy.2016.06.122Monasari, R., Abikusna, S., Sugiarto, B., & Ajiseno, B. (2018). IOP Conference Series: Earth and Environmental Science Analysis of emission gas and fuel consumption on SI engine fueled with low-grade bioethanol and oxygenated cycloheptanol additive Analysis of emission gas and fuel consumption on SI engine fueled with low-grade bioethanol and oxygenated cycloheptanol additive. 105, 12058. https://doi.org/10.1088/1755-1315/105/1/012058Srinivasan, C. A., & Saravanan, C. (2010). Study of Combustion Characteristics of an SI Engine Fuelled with Ethanol and Oxygenated Fuel Additives. Journal of Sustainable Energy & Environment. 1(2): p. 85-91.Sugiarto, B. (2002) Motor Pembakaran Dalam. Jakarta: Universitas Indonesia. ISBN 979- 97726-7-2.Thangavelu, S. K., Ahmed, A. S., & Ani, F. N. (2016). Review on Bioethanol as Alternative Fuel for Spark Ignition Engines. Renewable and Sustainable Energy Reviews. 56: p. 820-835Zhao, L., Wang, X., Wang, D., & Su, X. (2020). Investigation of the effects of lean mixtures on combustion and particulate emissions in a DISI engine fueled with bioethanol-gasoline blends. Fuel, 260, 116096. https://doi.org/10.1016/j.fuel.2019.116096
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.