Windbreaks were originally promoted across the U.S. Great Plains to reduce wind erosion. A review paper published nearly 30 years ago showed yield increases for a variety of crops associated with windbreaks. However, with the widespread use of notill cropping systems and advanced crop genetics, the question is ''Do windbreaks still provide a yield benefit?'' This study compared data from protected and unprotected fields over multiple years across Kansas and Nebraska looking at relative soybean (Glycine max L.) and winter wheat (Triticum aestivum L.) yield differences. Farmer's pre-existing georeferenced data, generated by automated combine yield monitors, were analyzed with ArcGIS 10.3.1 to visualize windbreak interaction with crop yield. Statistics were conducted to determine if the yield in protected areas of the field was significantly different from the yield in unprotected areas. Also, yield loss was estimated from the windbreak footprint to assess if yield increases were enough to compensate for the area taken out of crop production. Results showed: soybeans (57 crop/years) presented the most positive response to windbreak effect with significant yield increases 46% of the time, with a 16% (283 kg ha-1) average yield increase. Wheat (44 crop/years) yield increases were significant 30% of the time, with a 10% (319 kg ha-1) average yield increase. Narrow windbreaks (1-2 tree rows, average width of 13 m) and those on the north edge of fields resulted in yield increases that compensated for the footprint of the windbreak more often (71%) than wider windbreaks on the south edges of fields (38%).
Marsh terracing is a wetland restoration technique that is being implemented in the northern Gulf of Mexico. Marsh terraces are segmented berms of soil built within shallow coastal ponds, designed to increase marsh area and reduce wave energy. Approximately 980 linear km of marsh terraces have been constructed over almost 30 years in Louisiana and Texas to combat subsidence and sea-level rise; however little research has been conducted to determine their effectiveness. The objective of this study was to assess marsh terrace performance. The change in marsh terrace areas was measured over time through remote sensing. This analysis was conducted using one-meter resolution imagery from the National Agriculture Imagery program (NAIP) from 2003 until 2017 from five Louisiana coastal parishes. Twenty terrace fields of study between 10 and 14 years old were randomly selected within each parish. Results show more predominant deposition (55%) than erosion (45%) in marsh terraces. Terrace fields with high channel density and thereby an external sediment supply show more deposition compared to low channel density fields. This is the first study assessing multiple marsh terrace fields performance. Results are promising, especially considering the current rate of sea level rise and subsidence in Louisiana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.