The linear associator is a classic associative memory model. However, due to its low performance, it is pertinent to note that very few linear associator applications have been published. The reason for this is that this model requires the vectors representing the patterns to be orthonormal, which is a big restriction. Some researchers have tried to create orthogonal projections to the vectors to feed the linear associator. However, this solution has serious drawbacks. This paper presents a proposal that effectively improves the performance of the linear associator when acting as a pattern classifier. For this, the proposal involves transforming the dataset using a powerful mathematical tool: the singular value decomposition. To perform the experiments, we selected fourteen medical datasets of two classes. All datasets exhibit balance, so it is possible to use accuracy as a performance measure. The effectiveness of our proposal was compared against nine supervised classifiers of the most important approaches (Bayes, nearest neighbors, decision trees, support vector machines, and neural networks), including three classifier ensembles. The Friedman and Holm tests show that our proposal had a significantly better performance than four of the nine classifiers. Furthermore, there are no significant differences against the other five, although three of them are ensembles.
Over time, human beings have built increasingly large astronomical observatories to increase the number of discoveries related to celestial objects. However, the amount of collected elements far exceeds the human capacity to analyze findings without help. For this reason, researchers must now turn to machine learning to analyze such data, identifying and classifying transient objects or events within extensive observations of the firmament. Algorithms from the family of random forests (an ensemble of decision trees) have become a powerful tool that can be used to classify astronomical events and objects. This work aims to illustrate the versatility of machine learning algorithms, such as decision trees, to facilitate the identification and classification of celestial bodies by manipulating hyperparameters and studying the attributes of celestial body datasets. By applying a random forest algorithm to a well-known dataset that includes three types of celestial bodies, its effectiveness was compared against some supervised classifiers of the most important approaches (Bayes, nearest neighbors, support vector machines, and neural networks). The results show that random forests are a good alternative for data analysis and classification in astronomical observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.