BackgroundScientific literature on cystic echinococcosis (CE) reporting data on risk factors is limited and to the best of our knowledge, no global evaluation of human CE risk factors has to date been performed. This systematic review (SR) summarizes available data on statistically relevant potential risk factors (PRFs) associated with human CE.Methodology/Principal FindingsDatabase searches identified 1,367 papers, of which thirty-seven were eligible for inclusion. Of these, eight and twenty-nine were case-control and cross-sectional studies, respectively. Among the eligible papers, twenty-one were included in the meta-analyses. Pooled odds ratio (OR) were used as a measure of effect and separately analysed for the two study designs. PRFs derived from case-control studies that were significantly associated with higher odds of outcome were “dog free to roam” (OR 5.23; 95% CI 2.45–11.14), “feeding dogs with viscera” (OR 4.69; 95% CI 3.02–7.29), “slaughter at home” (OR 4.67; 95% CI 2.02–10.78) or at “slaughterhouses” (OR 2.7; 95% CI 1.15–6.3), “dog ownership” (OR 3.54; 95% CI 1.27–9.85), “living in rural areas” (OR 1.83; 95% CI 1.16–2.9) and “low income” (OR 1.68; 95% CI 1.02–2.76). Statistically significant PRFs from cross-sectional studies with higher odds of outcome were “age >16 years” (OR 6.08; 95% CI 4.05–9.13), “living in rural areas” (OR 2.26; 95% CI 1.41–3.61), “being female” (OR 1.38; 95% CI 1.06–1.8) and “dog ownership” (OR 1.37; 95% CI 1.01–1.86).Conclusions/SignificanceLiving in endemic rural areas, in which free roaming dogs have access to offal and being a dog-owner, seem to be among the most significant PRFs for acquiring this parasitic infection. Results of data analysed here may contribute to our understanding of the PRFs for CE and may potentially be useful in planning community interventions aimed at controlling CE in endemic areas.
The coevolution of ticks and the pathogens that they transmit has ensured their mutual survival. In these studies, we used a functional genomics approach to characterize tick genes regulated in response to Anaplasma marginale infection. Differentially regulated genes/proteins were identified by suppression-subtractive hybridization and differential in-gel electrophoresis analyses of cultured IDE8 tick cells infected with A. marginale. Nine of 17 of these genes were confirmed by real-time RT-PCR to be differentially regulated in ticks and/or IDE8 tick cells in response to A. marginale infection. RNA interference was used for functional studies. Six genes, which encode putative selenoprotein W2a, hematopoietic stem/progenitor cells protein-like, proteasome 26S subunit, ferritin, GST, and subolesin control, were found to affect A. marginale infection in IDE8 tick cells. Four genes, which encode putative GST, salivary selenoprotein M, vATPase, and ubiquitin, affected A. marginale infection in different sites of development in ticks. The results of these studies demonstrated that a molecular mechanism occurs by which tick cell gene expression mediates the A. marginale developmental cycle and trafficking through ticks.
Nanotechnology is a multidisciplinary science covering matters involving the nanoscale level that is being developed for a great variety of applications. Nanomedicine is one of these attractive and challenging uses focused on the employment of nanomaterials in medical applications such as drug delivery. However, handling these nanometric systems require defining specific parameters to establish the possible advantages and disadvantages in specific applications. This review presents the fundamental factors of nanoparticles and its microenvironment that must be considered to make an appropriate design for medical applications, mainly: (i) Interactions between nanoparticles and their biological environment, (ii) the interaction mechanisms, (iii) and the physicochemical properties of nanoparticles. On the other hand, the repercussions of the control, alter and modify these parameters in the biomedical applications. Additionally, we briefly report the implications of nanoparticles in nanomedicine and precision medicine, and provide perspectives in immunotherapy, which is opening novel applications as immune-oncology.
Cystic echinococcosis (CE) is an important helminthic zoonotic disease caused by the Echinococcus granulosus complex. In humans, CE is a chronic disease driven by the growth of echinococcal cysts in different organs. Prognosis of this disease depends on multiple factors, including location, number, size, and stage of the cysts, making CE a disease of complex management. CE is usually asymptomatic for years and attracts limited attention from funding organizations and health authorities. For this reason, only experts' recommendations are available but no evidence-based conclusions have been drawn for CE clinical management. One of those pitfalls refers to the lack of evidence to support the use of serological tools for the diagnosis and follow-up of CE patients. In this respect, crude antigens are used to detect specific antibodies in patients, giving rise to false positive results. The advent of molecular techniques allowing the production of recombinant proteins has provided a number of candidate antigens that could overcome the problems associated with the use of crude parasite extracts in the serological assays. In this review, we present the last advances in this field, proposing the use of serology to support cyst stage-specific diagnosis and follow-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.