HDM2 binds to an alpha-helical transactivation domain of p53, inhibiting its tumor suppressive functions. A miniaturized thermal denaturation assay was used to screen chemical libraries, resulting in the discovery of a novel series of benzodiazepinedione antagonists of the HDM2-p53 interaction. The X-ray crystal structure of improved antagonists bound to HDM2 reveals their alpha-helix mimetic properties. These optimized molecules increase the transcription of p53 target genes and decrease proliferation of tumor cells expressing wild-type p53.
The development of potent antithrombotic agents from the fibrinogen platelet receptor binding sequences Fg-alpha 572-575 -Arg-Gly-Asp-Ser- and Fg-gamma 400-411 -HHLGGAKQAGDV, believed to be a cryptic RGD-type sequence, is described. The tetrapeptide Ac-RGDS-NH2 itself is capable of inhibiting platelet aggregation in vitro at high concentrations, IC50 91.3 +/- 0.1 microM [in vitro antiaggregatory activity employing dog platelet rich plasma (PRP)/ADP], due to low platelet fibrinogen receptor affinity, Ki 2.9 +/- 1.9 microM (purified, reconstituted human platelet GPIIb/IIIa), relative to fibrinogen, Ki 38.0 +/- 6.0 nM. The peptide is also unstable to plasma, suffering total loss of in vitro activity upon incubation in PRP for 3 h (T1/2 90 min). Only modest improvements in potency were achieved with linear analogues of Ac-RGDS-NH2, while dramatic results were achieved with cyclic analogues, culminating in the cyclic disulfide Ac-cyclo-S,S-[Cys-(N alpha-Me)Arg-Gly-Asp-Pen]-NH2 (SK&F 106760) with improved plasma stability (100% activity after 3 h), affinity (Ki 58 +/- 20 nM purified human receptor), and potency (IC50 0.36 +/- 0.4 microM dog PRP/ADP). The affinity of this peptide is 2 orders of magnitude greater than that of Ac-RGDS-NH2. The affinity of the analogue is also comparable to fibrinogen. This peptide constitutes a first potent small peptide entry into the class of novel antithrombotic agents called fibrinogen receptor antagonists.
The activity and stability of the p53 tumor suppressor are regulated by the human homologue of the mouse double minute 2 (Hdm2) oncoprotein. It has been hypothesized that small molecules disrupting the Hdm2:p53 complex would allow for the activation of p53 and result in growth suppression. We have identified small-molecule inhibitors of the Hdm2:p53 interaction using our proprietary ThermoFluor microcalorimetry technology. Medicinal chemistry and structure-based drug design led to the development of an optimized series of benzodiazepinediones, including TDP521252 and TDP665759. Activities were dependent on the expression of wild-type (wt) p53 and Hdm2 as determined by lack of potency in mutant or null p53-expressing cell lines or cells engineered to no longer express Hdm2 and wt p53. TDP521252 and TDP665759 inhibited the proliferation of wt p53-expressing cell lines with average IC 50 s of 14 and 0.7 Mmol/L, respectively. These results correlated with the direct
RGD-containing proteins and peptides are known to bind to the platelet GPIIb/IIIa receptor and inhibit platelet aggregation. That a conformational component to the specificity exists is suggested by significantly lower activity of linear RGD analogs relative to closely related cyclic peptides and small proteins containing the RGD sequence. Recently, conformations for a suite of RGD containing cyclic peptides have been defined by NMR-based methods and, for one molecule, by X-ray diffraction. We report here the NMR-based conformational analysis of an additional cyclic peptide, cyclo(Pro-Arg-Gly-Asp-D-Pro-Gly), and compare the conformational variations in the suite of peptides and related analogs. Biological activity data for these peptides shows a preference of the platelet GPIIb/IIIa receptor for one conformation of the RGD sequence, but suggests its ability to bind a second, distinct conformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.