Anastrepha obliqua (Macquart) (Diptera: Tephritidae), the West Indian fruit fly, is a frugivorous pest that occasionally finds its way to commercial growing areas outside its native distribution. It inhabits areas in Mexico, Central and South America, and the Caribbean with occasional infestations having occurred in the southern tier states (California, Florida, and Texas) of the United States. This fly is associated with many plant species and is a major pest of mango and plum. We examine the genetic diversity of the West Indian fruit fly based on mitochondrial COI and ND6 DNA sequences. Our analysis of 349 individuals from 54 geographic collections from Mexico, Central America, the Caribbean, and South America detected 61 haplotypes that are structured into three phylogenetic clades. The distribution of these clades among populations is associated with geography. Six populations are identified in this analysis: Mesoamerica, Central America, Caribbean, western Mexico, Andean South America, and eastern Brazil. In addition, substantial differences exist among these genetic types that warrants further taxonomic review.
The West Indian fruit fly, Anastrepha obliqua (Diptera: Tephritidae), is an economically important pest that inhabits areas of South and Central America, Mexico and the Caribbean with occasional infestations in the southern United States. We examine intra-specific relationships within A. obliqua as well as interspecific relationships to other Anastrepha species using a multi-locus data set comprising nine loci (seven nuclear, two mitochondrial) with 105 operational taxonomic units. The results based on a concatenated set of nuclear loci strongly support the monophyly of A. obliqua and most of the other species previously identified by morphology. A split between Peruvian A. obliqua samples and those from other locations was also identified. These results contrast with prior findings of relationships within A. obliqua based on mitochondrial data, as we found a marked discrepancy between nuclear and mitochondrial loci. These analyses suggest that introgression, particularly between A. obliqua and fraterculus species, may be one explanation for the discrepancy and the high mitochondrial diversity reported for A. obliqua could be the result of incomplete lineage sorting.
Molecular identification of fruit flies in the genus Anastrepha (Diptera; Tephritidae) is important to support plant pest exclusion, suppression, and outbreak eradication. Morphological methods of identification of this economically important genus are often not sufficient to identify species when detected as immature life stages. DNA barcoding a segment of the mitochondrial cytochrome oxidase I gene has been proposed as a method to identify pests in the genus. The identification process for these fruit flies, however, has not been explained in prior DNA barcode studies. DNA barcode methods assume that available DNA sequence records are biologically meaningful. These records, however, can be limited to the most common species or lack population-level measurements of diversity for pests. In such cases, the available data used as a reference are insufficient for completing an accurate identification. Using 539 DNA sequence records from 74 species of Anastrepha, we demonstrate that our barcoding data can distinguish four plant pests: Anastrepha grandis (Macquart) (Diptera; Tephritidae), Anastrepha ludens (Loew), Anastrepha serpentina (Wiedemann), and Anastrepha striata Schiner. This is based on genetic distances of barcode records for the pests and expert evaluation of species and population representation in the data set. DNA barcoding of the cytochrome oxidase I gene alone cannot reliably diagnose the pests Anastrepha fraterculus (Wiedemann), Anastrepha obliqua (Macquart), and Anastrepha suspensa (Loew).
The thrips Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) is an invasive pest that poses a significant economical threat to U.S. agriculture and trade. In this study, DNA sequence data and polymerase chain reaction (PCR) were utilized to develop a molecular diagnostic marker for S. dorsalis. The DNA sequence variation from the internal transcribed spacer 2 (ITS2) region of nuclear ribosomal DNA (rDNA) was analyzed from various thrips species, including S. dorsalis. A primer set and polymerase chain reaction cycling parameters were designed for the amplification of a single marker fragment of S. dorsalis ITS2 rDNA. Specificity tests performed on ten thrips species, efficacy tests performed on fifteen S. dorsalis populations, and tests on primer sensitivity and robustness all demonstrated the diagnostic utility of this marker. This diagnostic PCR assay provides a quick, simple, and reliable molecular technique to be used in the identification of S. dorsalis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.