New materials are the backbone of their technology-driven modern civilization and at present carbon nanostructures are the leading candidates that have attracted huge research activities. Diamanes and diamanoids are the new nanoallotropes of sp 3 hybridized carbon which can be fabricated by proper functionalization, substitution, and via Birch reduction under controlled pressure using graphitic system as a precursor. These nanoallotropes exhibit outstanding electrical, thermal, optical, vibrational, and mechanical properties, which can be an asset for new technologies, especially for quantum devices, photonics, and space technologies. Moreover, the features like wide bandgap, tunable thermal conductivity, excellent thermal insulation, etc. make diamanes and diamanoids ideal candidates for nano-electrical devices, nano-resonators, optical waveguides, and the next generation thermal management systems. In this review, diamanes and diamanoids are discussed in detail in terms of its historical prospect, method of synthesis, structural features, broad properties, and cutting-edge applications. Additionally, the prospects of diamanes and diamanoids for new applications are carefully discussed. This review aims to provide a critical update with important ideas for a new generation of quantum devices based on diamanes and diamanoids which are going to be an important topic in the future of carbon nanotechnology.
Abstract2D graphene the most investigated structures from nanocarbon family studied in the last three decades. It is projected as an excellent material useful for quantum computing, artificial intelligence, and next generation advanced technologies. Graphene exists in several forms and its extraordinary thermal, mechanical, and electronic properties, principally depend on the kind of perfection of the hexagonal atomic lattice. Defects are always considered as undesired components but certain defects in graphene could be an asset for electrochemistry and quantum electronics due to the engineered electronclouds and quantum tunnelling. The authors carefully discuss the Stone‐Wales imperfections in graphene and its derivatives comprehensively. A specific emphasis is focused on the experimental and theoretical aspects of the Stone‐Wales defects in graphene with respect to structure‐property relationships. The corroboration of extrinsic defects like external atomic doping, functionalization, edge distortion in the graphene consisting of Stone‐Wales imperfections, which are very significant in designing graphene‐based electronic devices, are summarized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.