The interfacial structure of physisorbed homopolymers is studied by means of Monte Carlo simulations. The focus is on relatively long chains in an effort to reach the "power law regime" inside the intermediate portion of the solid-polymer interface. The chain lengths required exceed substantially those of polymers typically used for colloid stabilization. Our findings confirm the correctness of the generic −4/3 exponent for long chains. Furthermore, they quantify the difference between mean-field predictions and Monte Carlo data, which is exaggerated for long chains. Finally, these findings illustrate that resolution of the finer trends of interfacial structure requires even longer chain lengths than those studied in this article.
In this paper we present findings from molecular dynamics simulations that investigated the changes induced in molecularly thin n-octane films, as a result of increasing solid-methylene unit energetic affinity. The solid surfaces were deprived of any topographical features and were modeled as atomically smooth 10-4 Lennard–Jones planes. We observed an abrupt transition in the structural features of the film at a critical value of the characteristic energy that quantified the affinity between solid surfaces and methylene units. The transition was signaled by a discontinuous increase in the degree of intermolecular order and facilitated by a precipitous extension of the octane molecules, which adopted almost fully extended configurations. Furthermore, the transition resulted in the freezing of molecular migration and rotation. The characteristics of the transition showed that it is a mild first order phase transition between a highly ordered liquid and a poorly organized solid. The solid constitutes a phase with order intermediate to that of hydrocarbon ‘‘rotator’’ phases and two-dimensional smectics. These findings demonstrate that solidification of nanoscopically thin films of linear alkanes is a general, energetically driven phenomenon, which does not require the aid of commensurate surface topography. Our simulations provide a natural explanation for the solidlike features exhibited by alkane films studied experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.