Higher mFI, independent of other risk factors, is associated with higher mortality and morbidity in patients undergoing elective EVAR and OAR. The mortality in frail patients is further driven by FTR from postoperative complications. Preoperative recognition of frailty may serve as a useful adjunct for risk assessment.
GSTP1CpG island hypermethylation is the most common somatic genome alteration described for human prostate cancer (PCA); lack of GSTP1 expression is characteristic of human PCA cells in vivo. We report here that loss of GSTP1 function may have been selected during the pathogenesis of human PCA. Using a variety of techniques to detect GSTP1 CpG island DNA hypermethylation in PCA DNA, we found only hypermethylated GSTP1 alleles in each PCA cell in all but two PCA cases studied. In these two cases, CpG island hypermethylation was present at only one of two GSTP1 alleles in PCA DNA. In one of the cases, DNA hypermethylation at one GSTP1 allele and deletion of the other GSTP1 allele were evident. In the other case, an unmethylated GSTP1 allele was detected, accompanied by abundant GSTP1 expression. GSTP1 CpG island DNA hypermethylation was responsible for lack of GSTP1 expression by LNCaP PCA cells: treatment of the cells with 5-azacytidine (5-aza-C) , an inhibitor of DNA methyltransferases, reversed the GSTP1 promoter DNA hypermethylation, activated GSTP1 transcription, and restored GSTP1 expression. GSTP1 promoter activity, assessed via transfection of GSTP1 promoter-CAT reporter constructs in LNCaP cells, was inhibited by SssI-catalyzed CpG dinucleotide methylation. Remarkably, although selection for loss of GSTP1 function may be inferred for human PCA,
Interferon-producing cells (IPCs) secrete high levels of type I interferon in response to certain viruses. The lack of lineage markers, the expression of major histocompatibility complex (MHC) class II and the capacity to stimulate allogeneic T cells have led these cells to be classified as a subset of dendritic cells (DCs), called plasmacytoid DCs (PDCs). However, the role of IPCs/PDCs in initiating primary immune responses remains elusive. Here we examined the antigen presenting capacity of murine IPCs in antigen specific systems. While CD8α+ and CD11b+ DCs induced logarithmic expansion of naive CD4 and CD8 T cells, without conferring T helper commitment at a first encounter, primary IPCs lacked the ability to stimulate naive T cells. However, when antigen-experienced, nonpolarized T cells expanded by classical DC subsets, were restimulated by IPCs, they proliferated and produced high amounts of IFN-γ. These data indicate that IPCs can effectively stimulate preactivated or memory-type T cells and exert an immune-regulatory role. They also suggest that expansion of naive T cells and acquisition of effector function during antigen-specific T cell responses may involve different antigen-presenting cell (APC) types. Independent and coordinated control of T cell proliferation and differentiation would provide the immune system with greater flexibility in regulating immune responses.
To our knowledge, this represents the largest United States series of EVPAR to date. Early mid-term results of elective endovascular repair of popliteal artery aneurysms are encouraging. Further studies are warranted to define optimal indications for EVPAR and to generate long-term outcomes for this technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.