Neurogenesis, the division, migration, and differentiation of new neurons, occurs throughout life. Brain derived neurotrophic factor (BDNF) has been identified as a potential signaling molecule regulating neurogenesis in the subventricular zone (SVZ), but its functional consequences in vivo have not been well defined. We report marked and unexpected deficits in survival but not proliferation of newly born cells of adult knock-in mice containing a variant form of BDNF [a valine (Val) to methionine (Met) substitution at position 66 in the prodomain of BDNF (Val66Met)], a genetic mutation shown to lead to a selective impairment in activity-dependent BDNF secretion. Utilizing knock-out mouse lines, we identified BDNF and tyrosine receptor kinase B (TrkB) as the critical molecules for the observed impairments in neurogenesis, with p75 knock-out mice showing no effect on cell proliferation or survival. We then localized the activated form of TrkB to a discrete population of cells, type A migrating neuroblasts, and demonstrate a decrease in TrkB phosphorylation in the SVZ of Val66Met mutant mice. With these findings, we identify TrkB signaling, potentially through activity dependent release of BDNF, as a critical step in the survival of migrating neuroblasts. Utilizing a behavioral task shown to be sensitive to disruptions in olfactory bulb neurogenesis, we identified specific impairments in spontaneous olfactory discrimination, but not general olfactory sensitivity or habituation to olfactory stimuli in BDNF mutant mice. Through these observations, we have identified novel links between genetic variant BDNF and adult neurogenesis in vivo, which may contribute to significant impairments in olfactory function.
The presence of proteoglycans bearing galactosaminoglycan chains has been reported, but none has been identified previously in the matrix of the Engelbreth-Holm-Swarm tumor, which is a source of several basement membrane components. This tumor matrix contains perlecan, a large, low buoyant density heparan sulfate proteoglycan, widespread in many basement membranes and connective tissues. We now identify two distinct proteoglycan species from this tumor source, which are substituted with galactosaminoglycans and which show basement membrane localization by immunohistochemistry. One species is perlecan but, in addition to being present as a heparan sulfate proteoglycan, it is also present as a hybrid molecule, with dermatan sulfate chains. A minor population of perlecan apparently lacks heparan sulfate chains totally, and some of this is substituted with chondroitin sulfate. The second species is immunologically related to basement membrane-chondroitin sulfate proteoglycan (BM-CSPG) and bears chondroitin sulfate chains. No BM-CSPG was detectable which was substituted with heparan sulfate chains. A combination of immunological and molecular approaches, including cDNA cloning, showed that perlecan and BM-CSPG are distinct in core protein structure. Both are, however, basement membrane components, although there are tissue-specific differences in their distribution.
Bovine corneal Descemet's membrane (DM) was subjected to limited pepsin digestion. Soluble native collagens were fractionated by differential salt precipitation, and a mixture of type V collagen and collagenous fragments with a chain Mr of 50,000 (50K) was obtained at a concentration of 1.5 M NaCl. Further purification of the 50K collagen by molecular sieve and high-performance liquid chromatography resulted in the isolation of two-non-disulfide-bonded polypeptides, 50K-A and 50K-B, which were susceptible to several neutral proteases, including bacterial collagenase. By the criteria of peptide mapping, amino acid composition, and N-terminal sequence analysis, 50K-A and 50K-B were structurally dissimilar, although both chains contained Gly-X-Y repeats. 50K-A and 50K-B were immunologically and structurally distinct from collagen type I, III, IV, V, and VI. Immunohistochemical studies of bovine ocular tissue showed preferential distribution of the collagen containing the 50K fragment in the DM, with a more disperse arrangement of apparently interconnecting fibrils in the corneal stroma. Type VIII collagen isolated from the culture medium of metabolically radiolabeled bovine corneal endothelial (BCE) cells and its pepsin-resistant Mr 50 000 domain(s) both cross-reacted with antisera to 50K polypeptides from the corneal DM. Additionally, the CNBr peptide maps of pepsin-resistant Mr 50 000 polypeptides of type VIII collagen isolated from BCE cells and bovine corneal DM were highly similar.(ABSTRACT TRUNCATED AT 250 WORDS)
Abstract. A pepsin-resistant triple helical domain (chain 50,000 Mr) of type VIII collagen was isolated from bovine corneal Descemet's membrane and used as an immunogen for the production of mAbs. An antibody was selected for biochemical and tissue immunofluorescence studies which reacted both with Descemet's membrane and with type VIII collagen 50,000-Mr polypeptides by competition ELISA and immunoblotting. This antibody exhibited no crossreactivity with collagen types I-VI by competition ELISA.The mAb specifically precipitated a high molecular mass component of type VIII collagen (EC2, of chain 125,000 Mr) from the culture medium of subconfluent bovine corneal endothelial cells metabolically labeled for 24 h. In contrast, confluent cells in the presence of FCS and isotope for 7 d secreted a collagenous component of chain 60,000 Mr that did not react with the anti-type VIII collagen IgG. Type VIII collagen therefore appears to be synthesized as a discontinuous triple helical molecule with a predominant chain 125,000Mr by subconfluent, proliferating cells in culture.Immunofluorescence studies with the mAb showed that type VIII collagen was deposited as fibrils in the extracellular matrix of corneal endothelial cells. In the fetal calf, type VIII collagen was absent from basement membranes and was found in a limited number of tissues. In addition to the linear staining pattern observed in the Descemet's membrane, type VIII collagen was found in highly fibrillar arrays in the ocular sclera, in the meninges surrounding brain, spinal cord, and optic nerve, and in periosteum and perichondrium. Fine fibrils were evident in the white matter of spinal cord, whereas a more generalized staining was apparent in the matrices of cartilage and bone. Despite attempts to unmask the epitope, type VIII collagen was not found in aorta, kidney, lung, liver, skin, and ligament. We conclude that this unusual collagen is a component of certain specialized extracellular matrices, several of which are derived from the neural crest.T YPE VIII collagen was first isolated from the culture medium of metabolically labeled bovine aortic endothelial cells (22,24). This collagen was termed EC (endothelial collagen) and a survey of its distribution showed that it was secreted in limited amounts by most cultured bovine vascular and corneal endothelial cells and by human fibroblasts (21). Type VIII collagen was also produced in somewhat larger amounts by cell lines derived from a human astrocytoma (1), Ewing's sarcoma (of the femur), and adenocarcinomas metastatic to bone and pelvis (21). Since most studies on type VIII collagen to date have been carried out in cell culture systems or with Descemet's membrane (DMt; a specialized extracellular matrix [ECM] subjacent I. Abbreviations used in this paper: BCE, bovine corneal endothelial; DM, Descemet's membrane; ECM, extracellular matrix; RCE, rabbit corneal endothelial.to the corneal endothelium), the general distribution of this collagen in tissues is not known.Studies in vitro have suggested that n...
in Wiley Online Library (wileyonlinelibrary.com).Wax deposition modeling becomes complicated when multiphase flow is involved. Empirical heat and mass transfer correlations are unreliable for multiphase deposition modeling and full scale computational fluid dynamics calculations require expensive computational intensity. In this work, numerical methods are used to study wax deposition in oil/water stratified flow through a channel. A unidirectional flow analysis is used to calculate the nonisothermal hydrodynamics and mass transfer. It was found that the change in the position of the oil/water interface throughout the channel must be taken into accounted for the mass balance to be valid. Unfortunately, this change has not been accounted for in all previous studies. In addition, the growth of the wax deposit as a function of time along with the effect of oil/water flow rate ratio is discussed. The presence of water significantly reduces the severity of wax deposition by altering the heat and mass transfer characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.