Epilepsy is a chronic neurological disorder characterized by recurrent seizure attacks which are caused by an abnormal electrical discharge in the brain. Currently, there is a need for improved medicinal agents to treat epilepsy, since the currently available drugs are effective only in 60-80% of epileptic patients. So the indirect type of molecular modeling study was carried out to find out the 3D structural similarity between some reported anticonvulsant drugs and the newly designed quinazolinone derivatives. Thus, a new series of 3-(aryl)-2-thioxo-2,3-dihydroquinazolin-4(1H)-ones were synthesized using an appropriate synthetic route. Microwave radiation provides an alternate to conventional heating for rapid synthesis of drug molecules. The ideal features of microwave-assisted organic synthesis (MAOS) involve reduction of time for a chemical reaction, instantaneous and uniform heating, carrying out solvent free reactions, and possibility of parallel synthesis. It has proved a bonanza for the researchers involved in drug development and discovery processes such as high-speed combinatorial chemistry. In aqueous mediums, it has resulted in the development of relatively sustainable and environmentally benign protocols for the synthesis of novel drugs. MAOS under controlled conditions has many applications in the field of medicinal chemistry and pharmaceutical research. All the newly synthesized compounds were produced in good yield and characterized by I.R, 1H-NMR, and LC-MASS and also evaluated for their anticonvulsant activity by maximal electroshock (MES) model in rats. These findings are helpful to design better quinazolinone derivatives as novel antiepileptic drugs.
A simple, precise and accurate spectrophotometric method was developed for analysis of the osteoporesis drug alendronate sodium (ALS). The method is based on reaction of the drug with sodium-1,2-naphthoquinone-4-sulphonate (NQS) in presence of alkali to form a brown colored complex giving absorption maximum at 525 nm. The drug obeyed Beer’s law in the range of 5-70 µg/ml with a correlation coefficient of 0.999. The LOD and LOQ values are 1.7 µg/ml and 5.0 µg/ml, respectively. The average recoveries for recovery study were found to be in the range of 99.37%-100.46%. The R.S.D. values for intraday and inter-day precision were found to be 0.48 and 0.62, respectively. The optimized assay conditions were applied successfully for determination of ALS in pharmaceutical dosage forms. No interference was observed from the excipients present in the dosage form. The method is statistically validated as per the ICH requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.