The conversion and control for the utilization of power generated from energy sources can be performed using a power electronic converter system. The voltage source inverter (VSI) is one of the commonly used converter topologies, being controlled by a switching control algorithm for power conversion. Finite set-model predictive control (FS-MPC) is a modern switching control algorithm and has received significant attention due to its predictive nature. In this paper, the implementation of FS-MPC is presented for the load-side current control of a three-phase VSI system using an integrated platform of MATLAB/Simulink and Xilinx system generator (XSG). The XSG provides the functionality of digital design and intuitive implementation of field-programmable gate array (FPGA) controlled systems. The additional functionality of hardware-in-the-loop (HIL) co-simulation using FPGA is used for the testing and validation of controller performance. The controller performance is validated through three platforms: MATLAB/Simulink, XSG and HIL co-simulation using ZedBoard Zynq evaluation and development FPGA kit.
Three-phase two-level voltage source converters are used for distribution static compensator (DSTATCOM) applications and can be replaced by a multilevel inverter. In this paper, an LCL filter interfaced cascaded H-bridge multilevel inverter-based (CHBMLI) DSTATCOM is simulated and its performance is analyzed considering the system parameters. The analysis considers factors including the switching frequency, modulation index, and filter parameters of a DSTATCOM system. The LCL filter design and analysis for the low switching frequency operation of CHBMLI is proposed in this paper. Phase shift pulse-width modulation is used for the generation of switching signals. The reference current is generated using synchronous reference frame theory (SRFT) for reactive power and harmonic compensations. The simulation model of the CHBMLI-based DSTATCOM system is developed in MATLAB Simulink. The results are demonstrated for a linear/non-linear load under unbalanced conditions, considering the voltage sag and swell in the system due to a disturbance in the load.
In this paper, an advanced electrothermal simulation strategy is applied to a 3.3 kV silicon carbide MOSFET power module. The approach is based on a full circuital representation of the module, where use is made of the thermal equivalent of the Ohm’s law. The individual transistors are described with subcircuits, while the dynamic power-temperature feedback is accounted for through an equivalent thermal network enriched with controlled sources enabling nonlinear thermal effects. A synchronous step-up DC-DC converter and a single-phase inverter, both incorporating the aforementioned power module, are simulated. Good accuracy was ensured by considering electromagnetic effects due to parasitics, which were experimentally extracted in a preliminary stage. Low CPU times are needed, and no convergence issues are encountered in spite of the high switching frequencies. The impact of some key parameters is effortlessly quantified. The analysis witnesses the efficiency and versatility of the approach, and suggests its adoption for design, analysis, and synthesis of high-frequency power converters in wide-band-gap semiconductor technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.