Convolutional Neural Network (CNN) has been employed in classifying the COVID cases from the lungs’ CT-Scan with promising quantifying metrics. However, SARS COVID-19 has been mutated, and we have many versions of the virus B.1.1.7, B.1.135, and P.1, hence there is a need for a more robust architecture that will classify the COVID positive patients from COVID negative patients with less training. We have developed a neural network based on the number of channels present in the images. The CNN architecture is developed in accordance with the number of the channels present in the dataset and are extracting the features separately from the channels present in the CT-Scan dataset. In the tower architecture, the first tower is dedicated for only the first channel present in the image; the second CNN tower is dedicated to the first and second channel feature maps, and finally the third channel takes account of all the feature maps from all three channels. We have used two datasets viz. one from Tongji Hospital, Wuhan, China and another SARS-CoV-2 dataset to train and evaluate our CNN architecture. The proposed model brought about an average accuracy of 99.4%, F1 score 0.988, and AUC 0.99.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.