Poor sleep appears to be primarily a symptom of physical and mental health conditions, whereas the persistence of poor sleep is associated with psychologic distress. Importantly, sleep apnea appears to be associated with incident poor sleep but not with chronic insomnia. Finally, this study suggests that objective short sleep duration in poor sleepers is a biologic marker of genetic predisposition to chronic insomnia.
Objective short sleep duration and mental health problems are the strongest predictors of persistent insomnia. These data further support the validity and clinical utility of objective short sleep duration as a novel marker of the biological severity of insomnia.
Background and RationaleAtypical antipsychotics exhibit metabolic side effects including diabetes mellitus and obesity. The adverse events are preceded by acute worsening of oral glucose tolerance (oGTT) along with reduced plasma free fatty acids (FFA) and leptin in animal models. It is unclear whether the same acute effects occur in humans.Methodology/Principal FindingsA double blind, randomized, placebo-controlled crossover trial was conducted to examine the potential metabolic effects of olanzapine in healthy volunteers. Participants included male (8) and female (7) subjects [18–30 years old, BMI 18.5–25]. Subjects received placebo or olanzapine (10 mg/day) for three days prior to oGTT testing. Primary endpoints included measurement of plasma leptin, oral glucose tolerance, and plasma free fatty acids (FFA). Secondary metabolic endpoints included: triglycerides, total cholesterol, high- and low-density lipoprotein cholesterol, heart rate, blood pressure, body weight and BMI. Olanzapine increased glucose Area Under the Curve (AUC) by 42% (2808±474 vs. 3984±444 mg/dl·min; P = 0.0105) during an oGTT. Fasting plasma leptin and triglycerides were elevated 24% (Leptin: 6.8±1.3 vs. 8.4±1.7 ng/ml; P = 0.0203) and 22% (Triglycerides: 88.9±10.1 vs. 108.2±11.6 mg/dl; P = 0.0170), whereas FFA and HDL declined by 32% (FFA: 0.38±0.06 vs. 0.26±0.04 mM; P = 0.0166) and 11% (54.2±4.7 vs. 48.9±4.3 mg/dl; P = 0.0184), respectively after olanzapine. Other measures were unchanged.Conclusions/SignificanceOlanzapine exerts some but not all of the early endocrine/metabolic changes observed in rodent models of the metabolic side effects, and this suggest that antipsychotic effects are not limited to perturbations in glucose metabolism alone. Future prospective clinical studies should focus on identifying which reliable metabolic alterations might be useful as potential screening tools in assessing patient susceptibility to weight gain and diabetes caused by atypical antipsychotics.Trial RegistrationClinicalTrials.gov NCT00741026
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.