The prefrontal cortex (PFC) plays a critical role in the generation and regulation of emotion. However, we lack an integrative framework for understanding how different emotion-related functions are organized across the entire expanse of the PFC, as prior reviews have generally focused on specific emotional processes (e.g., decision making) or specific anatomical regions (e.g., orbitofrontal cortex). Additionally, psychological theories and neuroscientific investigations have proceeded largely independently because of the lack of a common framework. Here, we provide a comprehensive review of functional neuroimaging, electrophysiological, lesion, and structural connectivity studies on the emotion-related functions of 8 subregions spanning the entire PFC. We introduce the appraisal-by-content model, which provides a new framework for integrating the diverse range of empirical findings. Within this framework, appraisal serves as a unifying principle for understanding the PFC's role in emotion, while relative content-specialization serves as a differentiating principle for understanding the role of each subregion. A synthesis of data from affective, social, and cognitive neuroscience studies suggests that different PFC subregions are preferentially involved in assigning value to specific types of inputs: exteroceptive sensations, episodic memories and imagined future events, viscero-sensory signals, viscero-motor signals, actions, others' mental states (e.g., intentions), self-related information, and ongoing emotions. We discuss the implications of this integrative framework for understanding emotion regulation, value-based decision making, emotional salience, and refining theoretical models of emotion. This framework provides a unified understanding of how emotional processes are organized across PFC subregions and generates new hypotheses about the mechanisms underlying adaptive and maladaptive emotional functioning. (PsycINFO Database Record
Emotional-intensity is a core characteristic of affective events that strongly determines how individuals choose to regulate their emotions. Our conceptual framework suggests that in high emotional-intensity situations, individuals prefer to disengage attention using distraction, which can more effectively block highly potent emotional information, as compared with engagement reappraisal, which is preferred in low emotional-intensity. However, existing supporting evidence remains indirect because prior intensity categorization of emotional stimuli was based on subjective measures that are potentially biased and only represent the endpoint of emotional-intensity processing. Accordingly, this study provides the first direct evidence for the role of online emotional-intensity processing in predicting behavioral regulatory-choices. Utilizing the high temporal resolution of event-related potentials, we evaluated online neural processing of stimuli's emotional-intensity (late positive potential, LPP) prior to regulatory-choices between distraction and reappraisal. Results showed that enhanced neural processing of intensity (enhanced LPP amplitudes) uniquely predicted (above subjective measures of intensity) increased tendency to subsequently choose distraction over reappraisal. Additionally, regulatory-choices led to adaptive consequences, demonstrated in finding that actual implementation of distraction relative to reappraisal-choice resulted in stronger attenuation of LPPs and self-reported arousal.
When confronted with unwanted negative emotions, individuals use a variety of cognitive strategies for regulating these emotions. The brain mechanisms underlying these emotion regulation strategies have not been fully characterized, and it is not yet clear whether these mechanisms vary as a function of emotion intensity. To address these issues, 30 community participants (17 females, 13 males, M age = 24.3 years) completed a picture-viewing emotion regulation task with neutral viewing, reacting to negative stimuli, cognitive reappraisal, attentional deployment, and self-distancing conditions. Brain and behavioral data were simultaneously collected in a 3T GE MRI scanner. Findings indicated that prefrontal regions were engaged by all three regulation strategies, but reappraisal showed the least amount of increase in activity as a function of intensity. Overall, these results suggest that there are both brain and behavioral effects of intensity and that intensity is useful for probing strategy-specific effects and the relationships between the strategies. Furthermore, while these three strategies showed significant overlap, there also were specific strategy-intensity interactions, such as frontoparietal control regions being preferentially activated by reappraisal and self-distancing. Conversely, self-referential and attentional regions were preferentially recruited by self-distancing and distraction as intensity increased. Overall, these findings are consistent with the notion that there is a continuum of cognitive emotion regulation along which all three of these strategies lie.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.