Sodium alginate coated polyamide thin film composite (SA/PA-TFC) membranes were synthesized for the desalination of brackish water through reverse osmosis. Membranes were characterized by Fourier transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy, AFM, thermogravimetry, and universal testing machine for structural analysis, crystallinity, morphological, compositional, thermal, and mechanical properties, respectively. The effect of feed pressure on water flux and % salt rejection was quantified. Simulation results generated using the commercial process simulator PRO/II were in good agreement with the experimental data. Case studies using simulator were performed for brackish water with different salinity to optimize operating pressure based on product unit cost (PUC) by varying the feed pressure and membrane area. The calculated PUCs were found to be 0.9 and 0.3 $/m 3 for corresponding feed total dissolved solids (TDS) concentrations of 5000 and 500 mg/L at an optimum pressure of 10 bar, to achieve a salt rejection of 98% using a membrane area of 335 m 2. We believe these membranes are a prospective solution for brackish water desalination.
Desalination of nitrates from brackish water is prominent in the coastal areas due to excessive disposal of pesticides by agricultural industries. Nowadays, membrane processes are growing tremendously for the desalination of brackish water. In this context, polyurea (PU) could be a useful membrane material for the treatment of brackish water. The present work deals with the removal of nitrates from synthetic water using PU membranes by nanofiltration (NF) process. Polyurea thin film composite (PU-TFC) membranes were prepared by interfacial polymerization followed by thermal crosslinking and characterized using Fourier transformed infrared spectral (FTIR), X-ray diffraction (XRD), scanning electron microscopy– energy dispersion X-ray spectroscopy (SEM–EDS), Atomic force microscopy (AFM), thermogravimetric (TGA), and universal testing machine (UTM) for structural analysis, crystallinity, morphological, compositional, thermal and mechanical properties, respectively. Experimental studies were conducted on an NF pilot plant by varying operating pressure from 2 to 10 bar and feed nitrate concentration from 60 to 200 mg/L for evaluating PU membrane performance. Experimental observations revealed a maximum water flux of 30.6 L/m2 h and nitrate rejection of 97.2% at a pressure of 10 bar for feed containing 140 mg/L of nitrate. A mass transfer model was developed on the basis of solution–diffusion mechanism for a semi-batch NF process by considering cake enhanced concentration polarization model, for laminar flow with feed recycle, using a plate and frame membrane module. A generic semi-batch NF process model was integrated taking into account concentration polarization and fouling layer resistance. The integrated model was successfully compared with existing data in literature and could be used for process scale-up. Due to the merits of hydrophilicity, negative charge, high thermal and mechanical resistance, the PU membrane can be termed as a low cost, commercially viable and ecofriendly barrier for separation of nitrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.