Summary In recent decades, intracranial hemorrhage detection from computed tomography (CT) scans has gained considerable attention among researchers in the medical community. The major problem in dealing with the Radiological Society of North America (RSNA) dataset is a three dimensional representation of CT scan, where the labeled data are scarce and hard to obtain. To highlight this problem, a novel learned fully connected separable convolutional network is proposed in this research article. After collecting the CT scans, data augmentation is used to generate multiple image variations to improve the capacity of the proposed model generalization. Based on the albumentations library, the transformations are selected for data augmentation such as brightness adjustment, horizontal flipping, shifting, rotation, and scaling. The intracranial hemorrhage subtype classification is accomplished utilizing a learned fully connected separable convolutional network which significantly classifies six classes as any, intraparenchymal, subarachnoid, epidural, intraventricular, and subdural. In the resulting phase, the learned fully connected separable convolutional network obtained an average accuracy of 98.63%, sensitivity of 73.32%, specificity of 99.49%, and area under the curve of 98.98%, where the obtained results are effective compared with ResNet‐50, SE‐ResNeXt‐50, ResNeXt‐101, and ResNeXt‐101 with bidirectional long short term memory network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.