The planet is the most water-rich place because the oceans cover more than 75% of its land area. Because of the unique activities that occur in the depths, we know very little about oceans. Underwater wireless sensors are tools that can continuously transmit data to one of the source sensors while monitoring and recording their surroundings’ physical and environmental parameters. An Underwater Wireless Sensor Network (UWSN) is the name given to the network created by collecting these underwater wireless sensors. This particular technology has a random path loss model due to the time-varying nature of channel parameters. Data transmission between underwater wireless sensor nodes requires a careful selection of routing protocols. By changing the number of nodes in the model and the maximum speed of each node, performance parameters, such as average transmission delay, average jitter, percentage of utilization, and power used in transmit and receive modes, are explored. This paper focuses on UWSN performance analysis, comparing various routing protocols. A network path using the source-tree adaptive routing-least overhead routing approach (STAR-LORA) Protocol exhibits 85.3% lower jitter than conventional routing protocols. Interestingly, the fisheye routing protocol achieves a 91.4% higher utilization percentage than its counterparts. The results obtained using the QualNet 7.1 simulator suggest the suitability of routing protocols in UWSN.
Underwater communication applications extensively use localization services for object identification. Because of their significant impact on ocean exploration and monitoring, underwater wireless sensor networks (UWSN) are becoming increasingly popular, and acoustic communications have largely overtaken radio frequency (RF) broadcasts as the dominant means of communication. The two localization methods that are most frequently employed are those that estimate the angle of arrival (AOA) and the time difference of arrival (TDoA). The military and civilian sectors rely heavily on UWSN for object identification in the underwater environment. As a result, there is a need in UWSN for an accurate localization technique that accounts for dynamic nature of the underwater environment. Time and position data are the two key parameters to accurately define the position of an object. Moreover, due to climate change there is now a need to constrain energy consumption by UWSN to limit carbon emission to meet net‐zero target by 2050. To meet these challenges, we have developed an efficient localization algorithm for determining an object position based on the angle and distance of arrival of beacon signals. We have considered the factors like sensor nodes not being in time sync with each other and the fact that the speed of sound varies in water. Our simulation results show that the proposed approach can achieve great localization accuracy while accounting for temporal synchronization inaccuracies. When compared to existing localization approaches, the mean estimation error (MEE) and energy consumption figures, the proposed approach outperforms them. The MEEs is shown to vary between 84.2154m and 93.8275m for four trials, 61.2256m and 92.7956m for eight trials, and 42.6584m and 119.5228m for twelve trials. Comparatively, the distance‐based measurements show higher accuracy than the angle‐based measurements.This article is protected by copyright. All rights reserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.