Hydration layers are formed on hydrophilic crystalline surfaces immersed in water.
Adsorption of organic molecules from aqueous solution to the surface of carbon nanotubes or graphene is an important process in many applications of these materials. Here we use molecular dynamics simulation, supplemented by analytical chemistry, to explore in detail the adsorption thermodynamics of a diverse set of aromatic compounds on graphenic materials, elucidating the effects of the solvent, surface coverage, surface curvature, defects, and functionalization by hydroxy groups. We decompose the adsorption free energies into entropic and enthalpic components and find that different classes of compoundssuch as phenols, benzoates, and alkylbenzenescan easily be distinguished by the relative contributions of entropy and enthalpy to their adsorption free energies. Overall, entropy dominates for the more hydrophobic compounds, while enthalpy plays the greatest role for more hydrophilic compounds. Experiments and independent simulations using two different force field frameworks (CHARMM and Amber) support the robustness of these conclusions. We determine that concave curvature is generally associated with greater adsorption affinity, more favorable enthalpy, and greater contact area, while convex curvature reduces both adsorption enthalpy and contact area. Defects on the graphene surfaces can create concave curvature, resulting in localized binding sites. As the graphene surface becomes covered with aromatic solutes, the affinity for adsorbing an additional solute increases until a complete monolayer is formed, driven by more favorable enthalpy and partially canceled by less favorable entropy. Similarly, hydroxylation of the surface leads to preferential adsorption of the aromatic solutes to remaining regions of bare graphene, resulting in less favorable adsorption entropy, but compensated by an increase in favorable enthalpic interactions.
Superparamagnetic iron oxide nanoparticles (SPIONs) are highly biocompatible and have a versatile synthetic technique based on coprecipitation, reduction-precipitation, and hydrothermal methods, where Fe and Fe react in aqueous solutions; both these ions are present in our body and have clear metabolic pathways; therefore, they have attracted extensive research interest and development in the field of diagnostic imaging and therapy. However, most SPION-based clinical diagnostic contrast agents are discontinued due to severe pain, low transverse magnetic relaxivity range of 80-180 mM s, shorter circulation half-life, and lack of disease specificity. Therefore, in this study, we engineered a bone cancer-targeted hybrid nanoconstruct (HNC) with a high transverse magnetic relaxivity of 625 mM s, which was significantly higher than that of clinical contrast agents. The engineered HNC is peripherally decorated with a bone-seeking agent, alendronic acid-conjugated phospholipid, exhibiting a hydrodynamic size of 80 nm with a negative surface potential, -35 mV. The interior skeleton of the HNC is composed of biodegradable and biocompatible poly(l-lactic-co-glycolic acid) (PLGA), in which 5 nm SPIONs are confined. We have successfully tuned the distance between the confined SPIONs from 0.5 to 4 nm, as revealed by transmission electron microscopy (TEM) images and magnetic resonance image (MRI) phantoms. This cluster confinement dramatically enhances magnetic relaxivity possibly due to the increase in net local magnetization due to proximal field inhomogeneity. In an in vitro examination, 80% of HNC is found to bind with hydroxyapatite (HAp), which when characterized by TEM shows a painting of SPIONs over a HAp crystal. HNC is found to accumulate in mouse osteosarcoma tumor (K7M2 tumor model); both MRI and histological examination of the tumor show the potential of HNC as targeting agents for diagnosis of tumor in the bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.