A rationally designed nucleoside inhibitor of Mycobacterium tuberculosis growth (MIC(99) = 0.19 microM) that disrupts siderophore biosynthesis was identified. The activity is due to inhibition of the adenylate-forming enzyme MbtA which is involved in biosynthesis of the mycobactins.
5′-O-[N-(salicyl)sulfamoyl]adenosine (Sal-AMS) is a prototype for a new class of antitubercular agents that inhibit the aryl acid adenylating enzyme (AAAE) known as MbtA involved in biosynthesis of the mycobactins. Herein, we report the structure-based design, synthesis, biochemical, and biological evaluation of a comprehensive and systematic series of analogues, exploring the structureactivity relationship of the purine nucleobase domain of Sal-AMS. Significantly, 2-phenyl-Sal-AMS derivative 26 exhibited exceptionally potent antitubercular activity with an MIC 99 under irondeficient conditions of 0.049 µM while the N-6-cyclopropyl-Sal-AMS 16 led to improved potency and to a 64-enhancement in activity under iron-deficient conditions relative to iron-replete conditions, a phenotype concordant with the designed mechanism of action. The most potent MbtA inhibitors disclosed here display in vitro antitubercular activity superior to most current first line TB drugs, and these compounds are also expected to be useful against a wide range of pathogens that require arylcapped siderphores for virulence.
Tuberculosis (TB) is the leading cause of infectious disease mortality in the world by a bacterial pathogen. We previously demonstrated that a bisubstrate inhibitor of the adenylation enzyme MbtA, which is responsible for the second step of mycobactin biosynthesis, exhibited potent antitubercular activity. Here we systematically investigate the structure activity relationships of the bisubstrate inhibitor glycosyl domain resulting in the identification of a carbocyclic analogue that possesses a K I app value of 2.3 nM and MIC 99 values of 1.56 μM against M. tuberculosis H37Rv. The SAR data suggest the intriguing possibility that the bisubstrate inhibitors utilize a transporter for entry across the mycobacterial cell-envelope. Additionally, we report improved conditions for the expression of MbtA and biochemical analysis demonstrating that MbtA follows a random sequential enzyme mechanism for the adenylation half-reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.