A new technique has been developed to generate dendritic-equiaxed structures in aluminium alloy casting processes, not only to improve the mechanical properties but also to study the effect of crystal structure on the chemical and physical properties of alloys to be cast. The investigation combined laboratory experimental work, metallographic examination and mathematic modelling. The laboratory experimental work involved different superheats for AI-4.5%Cu alloy in cast ingots. Measurements of temperature distributions were conducted to verify the solidification model. A metallographic study combined macro and micro structural evolution of cast ingot samples. Two-dimensional mathematical models of fluid flow and heat transfer were developed to characterise the natural convection streams and thermal fields. The model predictions were compared to temperature and isotherms measurements where a good agreement was found. The formation of cast structure and columnar, equiaxed transition (CET) and macro segregation phenomena were studied and discussed, based not only on the theories of nucleation but also on the thermal effects in the mushy and liquid zones.
Although magnesium alloys have the advantage of high specific strength, they have poor atmospheric corrosion resistance. An important method of improving the corrosion resistance is by applying a coating layer. In this work, the physical vapor deposition (PVD) technique is used for coating a magnesium (Mg) AZ31 sheet substrate with a thin layer of high purity aluminum (Al) and Al-12.6% Si. Aluminum is expected to be suitable as a coating layer on Mg sheets, due to its corrosion resistance and its formability. Before coating, the substrate was subjected to several consecutive surface preparations, including sand-blasting, mechanical grinding, mirrorlike polishing, ultrasonic etching, and finally ion etching by magnetron sputtering (MS). PVD coating was conducted using a PVD machine with max electron beam power and voltage of 100 kW and 40 kV, respectively. This was either with or without plasma activation, and with variable substrate speeds ranging between 10 and 70 mm/s. During MS ion etching and coating, the substrate temperature increased. The substrate temperature increased with the application of plasma activation and with lower substrate speeds. The coating-layer thickness varied inversely with substrate speed. A thinner coat with finer morphology was obtained in the case of plasma activation. Other results included coating layer characteristics, diffusion between the AZ 31 substrate and the Al coating layer, adhesion of the coating layer to the substrate, and corrosion resistance by a humidity test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.