PurposeWe evaluated the impact of myopia on corneal biomechanical properties in primary open-angle glaucoma (POAG) and nonglaucoma patients, and the effect of modification of glaucoma on myopic eyes.MethodsThis cross-sectional study included 66 POAG eyes (33 myopia, 33 nonmyopia) and 66 normal eyes (33 myopia, 33 nonmyopia). Seven corneal biomechanical parameters were measured by ultra-high-speed Scheimpflug imaging, including corneal deformation amplitude (CDA), inward/outward corneal applanation length (ICA, OCA), inward/outward corneal velocity (ICV, OCV), radius, and peak distance (PD).ResultsMean age (SD) of the 65 male (49%) and 67 female (51%) patients was 59 (9.82) years. Myopia was associated with significantly higher CDA (adjusted effect = 0.104, P = 0.001) and lower OCV (adjusted effect = −0.105, P < 0.001) in the POAG group. Within the nonglaucoma group, myopic eyes had a significantly lower OCV (adjusted effect = −0.086, P < 0.001) and higher CDA (adjusted effect = 0.079, P = 0.001). All parameters except PD suggested that glaucoma modified the effect of myopia on corneal biomechanics. Percentage differences in the adjusted myopic effect between POAG and nonglaucoma patients was 31.65, 27.27, 31.65, 50.00, 22.09, and 60.49 for CDA, ICA, OCA, ICV, OCV, and radius, respectively.ConclusionsMyopia had a significant impact on corneal biomechanical properties in the POAG and nonglaucoma groups. The differences in corneal biomechanical parameters suggest that myopia is correlated with significantly lower ocular rigidity. POAG may enhance the effects of myopia on most of these parameters.
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe cutaneous adverse drug reactions with high mortality rates. Its sequelae, such as blindness, persist even after recovery. Patients with SJS/TEN should be accurately diagnosed and receive appropriate treatment as soon as possible. Therefore, identifying the factors for severity prediction is necessary. We aimed to clarify the clinical parameters and biological markers that can predict acute severe ocular complications (SOCs) in SJS/TEN. This retrospective cross-sectional study enrolled 47 patients with SJS/TEN who were divided into two groups according to ocular severity at acute onset: non-severe ocular complications group (n = 27) and severe ocular complications group (n = 20). Multivariate logistic regression analysis revealed that disease severity (body surface area detachment ≥ 10%) was a predictive factor for acute SOCs, and older age (≥ 60 years) was marginally significantly predictive of SOCs. Serum biomarker levels of S100A8/A9 and granulysin were marginally significant and tended to increase in the SOC group. Therefore, during the early acute stage, focusing on disease severity, patient age, and serum inflammatory biomarkers (S100A8/A9 and granulysin) might help predict SOC progression in patients with SJS/TEN who need prompt and aggressive ocular management to prevent severe ocular sequelae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.