The T118M mutation in PMP22 gene is associated with Charcot Marie Tooth, type 1A (CMT1A). CMT1A is a form of Charcot-Marie-Tooth disease, the most common inherited disorder of the peripheral nervous system. Mutations in CMT related disorder are seen to increase the stability of the protein resulting in the diseased state. We performed SNP analysis for all the nsSNPs of PMP22 protein and carried out molecular dynamics simulation for T118M mutation to compare the stability difference between the wild type protein structure and the mutant protein structure. The mutation T118M resulted in the overall increase in the stability of the mutant protein. The superimposed structure shows marked structural variation between the wild type and the mutant protein structures.
Dengue virus belongs to the virus family Flaviviridae. Dengue hemorrhagic disease caused by dengue virus is a public health
problem worldwide. The viral non structural 2B and 3 (NS2B-NS3) protease complex is crucial for virus replication and hence, it is
considered to be a good anti-viral target. Leaf extracts from Carica papaya is generally prescribed for patients with dengue fever, but
there are no scientific evidences for its anti-dengue activity; hence we intended to investigate the anti-viral activity of compounds
present in the leaves of Carica papaya against dengue 2 virus (DENV-2). We analysed the anti-dengue activities of the extracts from
Carica papaya by using bioinformatics tools. Interestingly, we find the flavonoid quercetin with highest binding energy against
NS2B-NS3 protease which is evident by the formation of six hydrogen bonds with the amino acid residues at the binding site of the
receptor. Our results suggest that the flavonoids from Carica papaya have significant anti-dengue activities.AbbreviationsADME - Absorption, distribution, metabolism and excretion,
BBB - Blood brain barrier,
CYP - Cytochrome P450,
DENV - – Dengue virus,
DHF - Dengue hemorrhagic fever,
DSS - Dengue shock syndrome,
GCMS - – Gas chromatography- Mass spectrometry,
MOLCAD - Molecular Computer Aided Design,
NS - Non structural,
PDB - Protein data bank,
PMF - Potential Mean Force.
Fused in sarcoma (FUS) gene encodes the RNA binding protein FUS. This gene is mapped to chromosome 16p11.2. The FUS protein binds with karyopherineβ2 (Kapβ2) through its proline/tyrosine nuclear localization signal (PY-NLS) that helps in the localization of FUS protein within the nucleus. Arginine residue in 521 position (R521) of PY-NLS plays a vital role in the binding of FUS protein with Kapβ2. Mutations in this position (R521C and R521H) are the most predominant mutations associated with amyotrophic lateral sclerosis (ALS). However, the mechanism by which these mutations lead to ALS is poorly understood. We examined the binding behaviour of the mutants FUS (R521C) and FUS (R521H) with Kapβ2 through protein-protein docking and molecular dynamics simulation. The binding patterns of mutants were compared with the binding behaviour of wild FUS-Kapβ2. Our results suggest that these mutants have relatively weak binding affinity with Kapβ2 when compared with wild FUS-Kapβ2 as indicated by the lesser number of interactions found between the mutant FUS and Kapβ2. Hence, these mutations weakens the binding and this results in the cytoplasmic mislocalization of mutant FUS; and thereby it increases the severity of ALS.
Mutations in Fetal Liver Tyrosine Kinase 3 (FLT3) genes are implicated in the constitutive activation and development of Acute Myeloid Leukaemia (AML). They are involved in signalling pathway of autonomous proliferation and block differentiation in leukaemia cells. FLT3 is considered as a promising target for the therapeutic intervention of AML. There are a few missense mutations associated with FLT3 that are found in AML patients. The D835N mutation is the most frequently observed and the aspartic acid in this position acts as a key residue for the receptor activation. The present study aims to understand the structural effect of D835N mutation in FLT3. We carried out the molecular dynamics (MD) simulation for a period of 120 ns at 300 K. Root-mean square deviation, root-mean square fluctuations, surface accessibility, radius of gyration, hydrogen bond, eigenvector projection analysis, trace of covariance matrix, and density analysis revealed the instability of mutant (D835N) protein. Our study provides new insights on the conformational changes in the mutant (D835N) structure of FLT3 protein. Our observations will be useful for researchers exploring AML and for the development of FLT3 inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.