The T118M mutation in PMP22 gene is associated with Charcot Marie Tooth, type 1A (CMT1A). CMT1A is a form of Charcot-Marie-Tooth disease, the most common inherited disorder of the peripheral nervous system. Mutations in CMT related disorder are seen to increase the stability of the protein resulting in the diseased state. We performed SNP analysis for all the nsSNPs of PMP22 protein and carried out molecular dynamics simulation for T118M mutation to compare the stability difference between the wild type protein structure and the mutant protein structure. The mutation T118M resulted in the overall increase in the stability of the mutant protein. The superimposed structure shows marked structural variation between the wild type and the mutant protein structures.
Dengue virus belongs to the virus family Flaviviridae. Dengue hemorrhagic disease caused by dengue virus is a public health
problem worldwide. The viral non structural 2B and 3 (NS2B-NS3) protease complex is crucial for virus replication and hence, it is
considered to be a good anti-viral target. Leaf extracts from Carica papaya is generally prescribed for patients with dengue fever, but
there are no scientific evidences for its anti-dengue activity; hence we intended to investigate the anti-viral activity of compounds
present in the leaves of Carica papaya against dengue 2 virus (DENV-2). We analysed the anti-dengue activities of the extracts from
Carica papaya by using bioinformatics tools. Interestingly, we find the flavonoid quercetin with highest binding energy against
NS2B-NS3 protease which is evident by the formation of six hydrogen bonds with the amino acid residues at the binding site of the
receptor. Our results suggest that the flavonoids from Carica papaya have significant anti-dengue activities.AbbreviationsADME - Absorption, distribution, metabolism and excretion,
BBB - Blood brain barrier,
CYP - Cytochrome P450,
DENV - – Dengue virus,
DHF - Dengue hemorrhagic fever,
DSS - Dengue shock syndrome,
GCMS - – Gas chromatography- Mass spectrometry,
MOLCAD - Molecular Computer Aided Design,
NS - Non structural,
PDB - Protein data bank,
PMF - Potential Mean Force.
In the present study, we have constructed an interaction network of 29 antibiotic resistant genes along with 777 interactions in E. coli O157:H7. Gene ontology analysis reveals that 94, 89 and 67 genes have roles in the cellular process, biological process and molecular function respectively. Gene complexes related to tripartite efflux pumps mdtEF-tolC and ABC family efflux pump macAB-tolC play key roles in multidrug efflux systems. It is noteworthy to mention that, 19 genes are involved in multi-efflux pumps and they play a significant role in multidrug resistance (MDR); while 18 genes are vital for fatty acid synthesis. Interestingly, we found that the four genes arnABCD are involved in both MDR and in fatty acid synthesis. Hence these genes could be targeted for new drug discovery. On the whole, our results provide a detailed understanding of the mode of MDR mechanisms in E.coli O157:H7.
The coronavirus disease (COVID-19) is resulting in millions of infected individuals with several hundred thousands dead throughout the world. Amidst all the havoc, one interesting observation in the present COVID-19 pandemic is the negligible symptoms in the young; particularly children below 10 years of age. We assume the extensive pediatric vaccination with MMR vaccines followed globally could have resulted in innate immune responses, e.g., induction of interferons (IFNs) and activated natural killer (NK) cells, thereby offering natural immunity against SARS-CoV-2 in the young population. Possible cross-protective innate immunity offered by MMR vaccination prompted us to suggest repurposing MMR vaccination for immuno-prophylaxis against COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.