According to various reports, climate change is responsible for the change in rainfall amount and pattern accompanied by the various degrees of extreme events in Sahelian West Africa in recent years. Other reports also suggest that there has been a ''recovery'' of the rainy season (Nicholson 2005). In this study, temporal characteristics of meteorological droughts in the Volta basin, a semi-arid region in West Africa, are investigated in order to provide a guide for sustainable water resource management. For this purpose, drought intensity, areal extent and recurrence frequency is analysed using the standardised precipitation index (SPI) for a time series between 1961 and 2005 from 52 meteorology stations across the Volta basin. Using this analysis the severity of the historical droughts of 1961, 1970, 1983, 1992 and 2001 that occurred in the region are assessed and their intensity, areal extent and return periods are obtained. The drought intensity is lower than -2.0 over nearly 75% of the region, meaning that a major part of the region was under extreme drought conditions during this year. The drought of 1983/1984 has a probability of occurrence of up to 0.1 from records spanning 44 years. The areal extent of extreme drought conditions is about 90% during this drought period.
Extreme weather events pose significant threats to urban health in low-and middle-income countries, particularly in sub-Saharan Africa where there are systemic health challenges. This paper investigates health system vulnerabilities associated with flooding and extreme heat, along with strategies for resilience building by service providers and community members, in Accra and Tamale, Ghana. We employed field observations, rainfall records, temperature measurements, and semi-structured interviews in health facilities within selected areas of the cities. Results indicate that poor building conditions, unstable power supply, poor sanitation and hygiene, and the built environment reduce access to healthcare for residents of poor urban areas.Health facilities are sited in low-lying areas with poor drainage systems and can be 6°C warmer at night than reported by official records from nearby weather stations. This is due to a combination of greater thermal inertia of the buildings and the urban heat island effect. Flooding and extreme heat interact with socioeconomic conditions to impact physical infrastructure and disrupt community health as well as health facility operations. Community members and health facilities make infrastructural and operational adjustments to reduce extreme weather stress and improve healthcare provision to clients. These measures include mobilisation of residents to clear rubbish and unclog drains; elevating equipment to protect it from floods; improving ventilation during extreme heat; and using alternative power sources for emergency surgery and storage during outages. Stakeholders recommend additional actions to manage flood and heat impacts on health in their cities, such as, improving the capacity of drainage systems to carry floodwaters, and routine temperature monitoring to better manage heat in health facilities.Finally, more timely and targeted information systems and emergency response plans are required to ensure preparedness for extreme weather events in urban areas.
Abstract. In the Volta Basin, infrastructure watershed development with respect to the impact of climate conditions is hotly debated due to the lack of adequate tools to model the consequences of such development. There is an ongoing debate on the impact of further development of small and medium scale reservoirs on the water level of Lake Volta, which is essential for hydropower generation at the Akosombo power plant. The GLOWA Volta Project (GVP) has developed a Volta Basin Water Allocation System (VB-WAS), a decision support tool that allows assessing the impact of infrastructure development in the basin on the availability of current and future water resources, given the current or future climate conditions. The simulated historic and future discharge time series of the joint climate-hydrological modeling approach (MM5/WaSiM-ETH) serve as input data for a river basin management model (MIKE BASIN). MIKE BASIN uses a network approach, and allows fast simulations of water allocation and of the consequences of different development scenarios on the available water resources. The impact of the expansion of small and medium scale reservoirs on the stored volume of Lake Volta has been quantified and assessed in comparison with the impact of climate variability on the water resources of the basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.