QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.
We present an ultrafast neural network (NN) model, QLKNN, which predicts core tokamak transport heat and particle fluxes. QLKNN is a surrogate model based on a database of 300 million flux calculations of the quasilinear gyrokinetic transport model QuaLiKiz. The database covers a wide range of realistic tokamak core parameters. Physical features such as the existence of a critical gradient for the onset of turbulent transport were integrated into the neural network training methodology. We have coupled QLKNN to the tokamak modelling framework JINTRAC and rapid control-oriented tokamak transport solver RAPTOR. The coupled frameworks are demonstrated and validated through application to three JET shots covering a representative spread of H-mode operating space, predicting turbulent transport of energy and particles in the plasma core. JINTRAC-QLKNN and RAPTOR-QLKNN are able to accurately reproduce JINTRAC-QuaLiKiz T i,e and n e profiles, but 3 to 5 orders of magnitude faster. Simulations which take hours are reduced down to only a few tens of seconds. The discrepancy in the final source-driven predicted profiles between QLKNN and QuaLiKiz is on the order 1%-15%. Also the dynamic behaviour was well captured by QLKNN, with differences of only 4%-10% compared to JINTRAC-QuaLiKiz observed at mid-radius, for a study of density buildup following the L-H transition. Deployment of neural network surrogate models in multi-physics integrated tokamak modelling is a promising route towards enabling accurate and fast tokamak scenario optimization, Uncertainty Quantification, and control applications.
The ab-initio phase diagram of dense hydrogen is very sensitive to errors in the treatment of electronic correlation. Recently, it has been shown that the choice of the density functional has a large effect on the predicted location of both the liquid-liquid phase transition and the solid insulator-to-metal transition in dense hydrogen. To identify the most accurate functional for dense hydrogen applications, we systematically benchmark some of the most commonly used functionals using Quantum Monte Carlo. By considering several measures of functional accuracy, we conclude that the van der Waals and hybrid functionals significantly out perform LDA and PBE. We support these conclusions by analyzing the impact of functional choice on structural optimization in the molecular solid, and on the location of the liquid-liquid phase transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.