Although primary cilia are well established as important sensory and signaling structures, their function in most tissues remains unknown. Obesity is a feature associated with some syndromes of cilia dysfunction, such as Bardet-Biedl syndrome (BBS) and Alström syndrome, as well as in several cilia mutant mouse models. Recent data indicate that obesity in BBS mutant mice is due to defects in leptin receptor trafficking and leptin resistance. Furthermore, induction of cilia loss in leptin-responsive proopiomelanocortin neurons results in obesity, implicating cilia on hypothalamic neurons in regulating feeding behavior. Here, we directly test the importance of the cilium as a mediator of the leptin response. In contrast to the current dogma, a longitudinal study of conditional Ift88 cilia mutant mice under different states of adiposity indicates that leptin resistance is present only when mutants are obese. Our studies show that caloric restriction leads to an altered anticipatory feeding behavior that temporarily abrogates the anorectic actions of leptin despite normalized circulating leptin levels. Interestingly, preobese Bbs4 mutant mice responded to the anorectic effects of leptin and did not display other phenotypes associated with defective leptin signaling. Furthermore, thermoregulation and activity measurements in cilia mutant mice are inconsistent with phenotypes previously observed in leptin deficient ob/ob mice. Collectively, these data indicate that cilia are not directly involved in leptin responses and that a defect in the leptin signaling axis is not the initiating event leading to hyperphagia and obesity associated with cilia dysfunction.
The maintenance of glucose homeostasis during pregnancy is critical to the health and well-being of both the mother and the developing fetus. Strikingly, approximately 7% of human pregnancies are characterized by insufficient insulin production or signaling, resulting in gestational diabetes mellitus (GDM). In addition to the acute health concerns of hyperglycemia, women diagnosed with GDM during pregnancy have an increased incidence of complications during pregnancy as well as an increased risk of developing type 2 diabetes (T2D) later in life. Furthermore, children born to mothers diagnosed with GDM have increased incidence of perinatal complications, including hypoglycemia, respiratory distress syndrome, and macrosomia, as well as an increased risk of being obese or developing T2D as adults. No single environmental or genetic factor is solely responsible for the disease; instead, a variety of risk factors, including weight, ethnicity, genetics, and family history, contribute to the likelihood of developing GDM, making the generation of animal models that fully recapitulate the disease difficult. Here, we discuss and critique the various animal models that have been generated to better understand the etiology of diabetes during pregnancy and its physiological impacts on both the mother and the fetus. Strategies utilized are diverse in nature and include the use of surgical manipulation, pharmacological treatment, nutritional manipulation, and genetic approaches in a variety of animal models. Continued development of animal models of GDM is essential for understanding the consequences of this disease as well as providing insights into potential treatments and preventative measures.
Stimulation of endogenous β-cell expansion could facilitate regeneration in patients with diabetes. In mice, connective tissue growth factor (CTGF) is expressed in embryonic β-cells and in adult β-cells during periods of expansion. We discovered that in embryos CTGF is necessary for β-cell proliferation, and increased CTGF in β-cells promotes proliferation of immature (MafA−) insulin-positive cells. CTGF overexpression, under nonstimulatory conditions, does not increase adult β-cell proliferation. In this study, we tested the ability of CTGF to promote β-cell proliferation and regeneration after partial β-cell destruction. β-Cell mass reaches 50% recovery after 4 weeks of CTGF treatment, primarily via increased β-cell proliferation, which is enhanced as early as 2 days of treatment. CTGF treatment increases the number of immature β-cells but promotes proliferation of both mature and immature β-cells. A shortened β-cell replication refractory period is also observed. CTGF treatment upregulates positive cell-cycle regulators and factors involved in β-cell proliferation, including hepatocyte growth factor, serotonin synthesis, and integrin β1. Ex vivo treatment of whole islets with recombinant human CTGF induces β-cell replication and gene expression changes consistent with those observed in vivo, demonstrating that CTGF acts directly on islets to promote β-cell replication. Thus, CTGF can induce replication of adult mouse β-cells given a permissive microenvironment.
Infections caused by enterotoxigenic Escherichia coli (ETEC)are the leading cause of traveler's diarrhea and the major cause of diarrheal disease in underdeveloped nations, especially among children. ETEC, which is usually transmitted by food or water contaminated with animal or human feces, is estimated to be responsible annually for more than 650 million cases of enteric infections and nearly 800,000 deaths (29). Infection begins with ingestion of bacteria, followed by elaboration of enterotoxin and bacterial colonization of the gut, and presents as a profuse watery diarrhea which disseminates the bacteria back into the environment (10).ETEC strains are lactose-fermenting E. coli strains that produce a heat-labile enterotoxin (LT, hereafter referred to as LT-I), heat-stable enterotoxins (ST), or both and colonization factors which enable ETEC to colonize the small intestine (22). The pathogenesis of ETEC is dependent on the strains' capacity to produce LT-I and/or ST (10, 29). LT-I is closely related functionally, antigenically, and structurally to cholera toxin (CT), the heat-labile enterotoxin produced by Vibrio cholerae. Antiserum against CT neutralizes the toxicity of LT-I, and antiserum against LT-I neutralizes the toxicity of CT (15). Structurally, LT-I and CT are oligomeric proteins composed of an A polypeptide which is noncovalently coupled to a pentameric array of B polypeptides (15). The A polypeptide of LT-I and CT is enzymatically active and catalyzes an ADP-ribosylation of the G s ␣ regulatory protein in the intoxicated cell. Ribosylation of this regulatory protein constitutively activates adenylate cyclase, the enzyme which catalyzes production of cyclic AMP (cAMP) (3,20). Accumulation of cAMP induces the intoxicated cell to secrete electrolytes and chloride ions, thus generating the watery diarrhea, which is symptomatic of intoxication. Intracellular accumulation of cAMP modulates other cellular processes such as protein kinase activity, activation of calcium channels, etc. (15). Binding of LT-I and CT to ganglioside receptors is mediated by the B polypeptides. Gangliosides are members of a heterogeneous family of sialylated glycosphingolipids expressed on the surface of eukaryotic cells (9). Based on these characteristics, LT-I and CT have been designated as members of the large family of toxins known as the A 1 B 5 ADP-ribosylating heat-labile enterotoxins (HLTs).LT-IIa and LT-IIb, two new members of the A 1 B 5 family of HLTs produced by E. coli, were recently described (11,12,27). While it is clear that LT-IIa and LT-IIb are evolutionarily related to LT-I and CT, there are major differences between the two groups of enterotoxins. LT-IIa and LT-IIb are antigenically distinguishable from LT-I and CT and from each other (12). These antigenic differences are reflected in the low amino acid sequence similarity of the A polypeptides and the virtual absence of amino acid sequence homology of the B polypeptides between the two groups (LT-I and CT versus LT-IIa and LT-IIb) (35). To distinguish betwee...
Summary Spermiogenesis is the differentiation of spermatids into motile sperm consisting of a head and a tail. The head harbors a condensed elongated nucleus partially covered by the acrosome-acroplaxome complex. Defects in the acrosome-acroplaxome complex are associated with abnormalities in sperm head shaping. The head-tail coupling apparatus (HTCA), a complex structure consisting of two cylindrical microtubule-based centrioles and associated components, connects the tail or flagellum to the sperm head. Defects in the development of the HTCA cause sperm decapitation and disrupt sperm motility, two major contributors to male infertility. Here, we provide data indicating that mutations in the gene Coiled-coil domain containing 42 (Ccdc42) is associated with malformation of the mouse sperm flagella. In contrast to many other flagella and motile cilia genes, Ccdc42 expression is only observed in the brain and developing sperm. Male mice homozygous for a loss-of-function Ccdc42 allele (Ccdc42KO) display defects in the number and location of the HTCA, lack flagellated sperm, and are sterile. The testes enriched expression of Ccdc42 and lack of other phenotypes in mutant mice make it an ideal candidate for screening cases of azoospermia in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.