Stimulation of endogenous β-cell expansion could facilitate regeneration in patients with diabetes. In mice, connective tissue growth factor (CTGF) is expressed in embryonic β-cells and in adult β-cells during periods of expansion. We discovered that in embryos CTGF is necessary for β-cell proliferation, and increased CTGF in β-cells promotes proliferation of immature (MafA−) insulin-positive cells. CTGF overexpression, under nonstimulatory conditions, does not increase adult β-cell proliferation. In this study, we tested the ability of CTGF to promote β-cell proliferation and regeneration after partial β-cell destruction. β-Cell mass reaches 50% recovery after 4 weeks of CTGF treatment, primarily via increased β-cell proliferation, which is enhanced as early as 2 days of treatment. CTGF treatment increases the number of immature β-cells but promotes proliferation of both mature and immature β-cells. A shortened β-cell replication refractory period is also observed. CTGF treatment upregulates positive cell-cycle regulators and factors involved in β-cell proliferation, including hepatocyte growth factor, serotonin synthesis, and integrin β1. Ex vivo treatment of whole islets with recombinant human CTGF induces β-cell replication and gene expression changes consistent with those observed in vivo, demonstrating that CTGF acts directly on islets to promote β-cell replication. Thus, CTGF can induce replication of adult mouse β-cells given a permissive microenvironment.
ObjectivePromotion of endogenous β-cell mass expansion could facilitate regeneration in patients with diabetes. We discovered that the secreted protein CTGF (aka CCN2) promotes adult β-cell replication and mass regeneration after injury via increasing β-cell immaturity and shortening the replicative refractory period. However, the mechanism of CTGF-mediated β-cell proliferation is unknown. Here we focused on whether CTGF alters cells of the immune system to enhance β-cell replication.MethodsUsing mouse models for 50% β-cell ablation and conditional, β-cell-specific CTGF induction, we assessed changes in immune cell populations by performing immunolabeling and gene expression analyses. We tested the requirement for macrophages in CTGF-mediated β-cell proliferation via clodronate-based macrophage depletion.ResultsCTGF induction after 50% β-cell ablation increased both macrophages and T-cells in islets. An upregulation in the expression of several macrophage and T-cell chemoattractant genes was also observed in islets. Gene expression analyses suggest an increase in M1 and a decrease in M2 macrophage markers. Depletion of macrophages (without changes in T cell number) blocked CTGF-mediated β-cell proliferation and prevented the increase in β-cell immaturity.ConclusionsOur data show that macrophages are critical for CTGF-mediated adult β-cell proliferation in the setting of partial β-cell ablation. This is the first study to link a specific β-cell proliferative factor with immune-mediated β-cell proliferation in a β-cell injury model.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.