Normalization of altered glutamate neurotransmission through activation of the mGluR2 has emerged as a new approach to treat schizophrenia. These studies describe a potent brain penetrant mGluR2 positive allosteric modulator (PAM), SAR218645. The compound behaves as a selective PAM of mGluR2 in recombinant and native receptor expression systems, increasing the affinity of glutamate at mGluR2 as inferred by competition and GTPγ35S binding assays. SAR218645 augmented the mGluR2-mediated response to glutamate in a rat recombinant mGluR2 forced-coupled Ca2+ mobilization assay. SAR218645 potentiated mGluR2 agonist-induced contralateral turning. When SAR218645 was tested in models of the positive symptoms of schizophrenia, it reduced head twitch behavior induced by DOI, but it failed to inhibit conditioned avoidance and hyperactivity using pharmacological and transgenic models. Results from experiments in models of the cognitive symptoms associated with schizophrenia showed that SAR218645 improved MK-801-induced episodic memory deficits in rats and attenuated working memory impairment in NMDA Nr1neo−/− mice. The drug reversed disrupted latent inhibition and auditory-evoked potential in mice and rats, respectively, two endophenotypes of schizophrenia. This profile positions SAR218645 as a promising candidate for the treatment of cognitive symptoms of patients with schizophrenia, in particular those with abnormal attention and sensory gating abilities.
(Aminoalkyl)carbamates of forskolin were synthesized at the 6- and 7-hydroxyl positions of forskolin with the length of the alkyl chain varying from ethyl to heptyl. Two of these derivatives, 7-[[(2-aminoethyl)amino]carbonyl]-7-desacetylforskolin (2) and 6-[[(2-aminoethyl)amino]carbonyl]forskolin (3), were used to synthesize iodinated derivatives of forskolin that bind with high affinity to adenylyl cyclase in bovine brain membranes and the glucose transporter in human erythrocyte membranes, respectively. Hydroxyphenyl derivatives of forskolin were prepared from the (aminoalkyl)carbamates and tested for their ability to bind to adenylyl cyclase in bovine brain membranes and the glucose transporter in human erythrocyte membranes. The 6-derivative (18) of forskolin had a Kd of 9 nM at adenylyl cyclase and was more potent than either the 7-derivatives or the 6-derivatives of 7-desacetylforskolin. The 7-derivatives were more potent at binding to the glucose transporter than forskolin. In contrast, the 6-derivatives had Kd's greater than 100 microM at the glucose transporter. Isothiocyanates and N-bromoacetyl derivatives were synthesized from 2 and 3 as potential alkylating agents for forskolin binding sites. The alkylating agents produced an irreversible loss of forskolin binding to adenylyl cyclase. In contrast, the alkylating agents bound reversibly to the glucose transporter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.