This paper deals with the multi-objective path placement optimization for Parallel Kinematics Machines (PKMs) based on energy consumption, actuators torques and shaking forces. It aims at determining the optimal location of a given test path within the workspace of a PKM in order to minimize the electric energy used by the actuators, their maximal torque and the shaking forces subject to the kinematic, dynamic and geometric constraints. The proposed methodology is applied to the Orthoglide, a three-degree-of-freedom translational PKM, as an illustrative example.
This paper addresses the dimensional synthesis of parallel kinematics machines. A multiobjective optimization problem is proposed in order to determine optimum structural and geometric parameters of parallel manipulators. The proposed approach is applied to the optimum design of a three-degree-of-freedom planar parallel manipulator in order to minimize the mass of the mechanism in motion and to maximize its regular shaped workspace.
This paper deals with the comparison of planar parallel manipulator architectures based on a multi-objective design optimization approach. The manipulator architectures are compared with regard to their mass in motion and their regular workspace size, i.e., the objective functions. The optimization problem is subject to constraints on the manipulator dexterity and stiffness. For a given external wrench, the displacements of the moving platform have to be smaller than given values throughout the obtained maximum regular dexterous workspace. The contributions of the paper are highlighted with the study of 3-PRR, 3-RPR and 3-RRR planar parallel manipulator architectures, which are compared by means of their Pareto frontiers obtained with a genetic algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.