Continuous progress in the domain of nano and material science has led to modulation ofthe properties of nanomaterials in a controlled and desired fashion. In this sense, nanomaterials,including carbon-based materials, metals and metal oxides, and composite/hybrid materials haveattracted extensive interest with regard to the construction of electrochemical biosensors. Themodification of a working electrode with a combination of two or three nanomaterials in the formof nano-composite/nano-hybrids has revealed good results with very good reproducibility, stability,and improved sensitivity. This review paper is focused on discussing the possible constructs ofnano-hybrids and their subsequent use in the construction of electrochemical glucose biosensors.
Nitroaromatic explosives are a class of compounds that are responsible for various health hazards and terrorist outrages. Among these, sensitive detection of 2,4,6-trinitrophenol (TNP) explosive has always been highly desirable considering public health and national security. In this regard, three fluorene-based conjugated polymers (CP 1, CP 2, and CP 3) were synthesized through the Suzuki−Miyaura coupling reaction and were found to be highly sensitive for fluorescence detection of TNP with detection limits of 3.2, 5.7, and 6.1 pM, respectively. Excellent selectivity of CPs toward TNP was attributed to their unique π-π interactions based on fluorescence studies and density functional theory (DFT) calculations. The high sensitivity of CPs to TNP was attributed to the static quenching mechanism based on the photoinduced electron transfer process and was evaluated by fluorescence, UV−visible absorption, dynamic light scattering, Job's plots, the Benesi−Hildebrand plots, and DFT calculations. CPs were also used for colorimetric and real-water sample analysis for the detection of TNP explosive. Meanwhile, sensor-coated test strips were fabricated for on-site detection of TNP, which makes them convenient solid-supported sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.