Background: Vitiligo is a common dermatological disorder of chronic depigmentation which is phenotypically characterized by white macules on the skin caused as a result of the systematic destruction of functional melanocytes. This review provides an overview of vitiligo, its etiopathogenesis and disease management, and also discusses the scope of network-interaction studies and polypharmacological studies in understanding vitiligo disease module. Methods: A narrative review of the relevant published literatures known to the authors that comprehensively discussed about vitiligo and its implications was conducted. Results: Emerging evidence underlines the existing connection between deregulated miRNA function and vitiligo pathogenesis. It has also been linked with autoimmunity for the cause of melanocyte death in susceptible individuals. Alteration of genetic factors involved in immune responses and melanogenesis along with environmental factors are central to disease manifestation. Screening methods as such are not available for vitiligo, and the diagnosis is based on the assessment of the absence of melanocytes from the lesions in the affected area. With the occurrence of vitiligo at any age, most people typically develop it at a young age. Depending on the disease course and duration, clinical management primarily involves disease stabilization either by repigmentation or depigmentation of the skin. Conclusions: Several questions remain unsolved which indeed makes vitiligo an excellent model for studying autoimmune and degenerative processes. An understanding of the underlying degenerative mechanisms and unraveling the biological mediators of melanocyte loss will open up avenues for testing novel therapeutic approaches in vitiligo management. Such studies can revolutionize our apprehension of the molecular interconnections that underpin vitiligo pathogenesis.
Banana bunchy top virus is considered to be the most economically destructive pathogens of banana that causes severe economic loss in banana plantations worldwide, including India. In this present study we have developed an improved electrochemical ELISA for detection of Banana bunchy top virus (BBTV). For enhanced and accurate detection we have used cadmium selenide (CdSe) quantum dots (QDs) as signal amplifiers. Experiments in this study were performed using primary antibody raised from recombinant coat protein of BBTV. CdSe QDs could significantly amplify the electrical signals in this assay and make the method appropriate for lab use. The result of electrical conduction showed the difference of impedance between the healthy and diseased sample of the order of ~ 100 Ω. The electrochemical ELISA could detect the virus in plant sap up to dilution of 1:25 as compared to 1:10 of conventional ELISA.
Background: The interaction of genetic variants and their distribution in the genome is firmly believed to contribute to genetic dermatological disorders. For the convenience of clinicians and researchers to explore such genetic variants, we identified and validated the genetic association of human SNPs with dermatological disorders through manual curation and computational analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.