Nickel and chromium existing in stainless-steel crowns (SSCs, used in pediatric dentistry) might be cytotoxic and allergenic. However, no in vivo studies have examined their salivary levels in children using SSCs, or in young children without SSCs. Also, the effect of acidity on metal ion release has not yet been evaluated in any previous in vivo studies in the whole literature. Therefore, this preliminary before-after clinical trial was conducted. Salivary nickel/chromium levels of 30 children before and after 2 months of placement of SSCs were measured using atomic absorption spectrophotometry. Salivary pH was measured with a digital pH meter. The effects of treatment, pH, number of SSCs, gender, and age on salivary ions were analyzed statistically (α = 0.05, β = 0.15). Salivary nickel concentrations increased from 4.9010 ± 4.7390 to 5.6320 ± 4.7210 μg/L (P = 0.000, paired t test). Chromium increased from 0.3273 ± 0.5214 to 0.4199 ± 0.6404 μg/L (P = 0.016). Saliva pH increased from 6.81 ± 0.52 to 7.04 ± 0.47 (P = 0.000). Ion levels were not correlated with pH (P > 0.14), except chromium in the follow-up (rho = - 0.435, P = 0.016). Nickel increase (but not chromium increase) was correlated with pH increase (rho = 0.367, P = 0.046). Age was only correlated with baseline chromium (rho = 0.373, P = 0.042). Being male was associated with baseline/follow-up nickel levels (P ≤ 0.030). SSC number was not correlated with ions or pH (P > 0.36). It was shown for the first time that SSCs might increase salivary nickel and chromium concentrations and reduce saliva acidity. Nickel increase might be in line with pH elevation. The raised pH might be associated with reduced chromium release. Boys might have higher nickel levels than might girls, with or without SSCs.
Objective
This study aims to evaluate the discoloration rate of two types of composites, microhybrid and nanohybrid, after exposure to natural and commercially-produced juices.
Materials and methods
In this experimental study, 90 disc-shaped specimens with a thickness of 2 mm and a diameter of 10 mm were taken from two composites, microhybrid P4 (Kerr-ITALY) and nanohybrid Filtek Z250XT (3M-ESPE-USA) (two groups of 45). Then, the samples of each group were divided into five subgroups of nine and were immersed for 10 days for 4 h in five solutions of commercially-produced orange juice, natural orange juice, commercially-produced pomegranate juice, natural pomegranate juice, and distilled water (control group). The colour of the samples was measured by a reflective spectrophotometer using the CLEl*a*b colour space at baseline and after discoloration.
Result
The independent t-test showed that the mean discoloration rate (∆E) of nanohybrid composite exposed to commercially-produced orange juice, natural pomegranate juice, and commercially-produced pomegranate juice was significantly higher than microhybrid composite (P < 0.01). In addition, the test found that the highest discoloration rate of the nanohybrid composite was related to the effect of commercially-produced orange juice (∆E = 13.03) and the highest discoloration rate of microhybrid composite was related to the effect of natural pomegranate juice (∆E = 4.79).
Conclusion
According to the results, it seems that microhybrid composites are more resistant to discoloration than nanohybrid composites. According to the results, consumption of dyed drinks, particularly natural pomegranate juice, commercially-produced orange juice, and commercially-produced pomegranate juice, is not recommended in the first few days after composite restoration.
Numerous studies have been conducted on the effect of various beverages on the mechanical properties of toothcolored materials, however, little is known about the effects of these materials on composites, particularly newer types such as nanocomposites. Objectives: This study aimed to evaluate the surface microhardness of two types of composites, micro-hybrid (point 4) and nanohybrid (premise), after exposure to natural and industrial juices. Methods: In this experimental study, 90 disc-shaped specimens with a thickness of 2 mm and a diameter of 10 mm were taken from two composites, micro-hybrid Point4 (Kerr) and nanohybrid premise (kerr) (two groups of 45). Then, the specimens of each group were divided into 5 subgroups of 9 and were immersed for 7 days for 6 hours in 5 solutions of industrial orange juice, natural orange juice, industrial pomegranate juice, natural pomegranate juice, and distilled water (control group). Surface microhardness of specimens was measured by Vickers device at baseline, one day and one week after immersing. Data was measured by ANOVA, repeated measure test, and independent t-test. A significant level of α was 0.05. Results: The surface microhardness of two types of composites exposed to beverages was reduced significantly. However, no significant difference was found between natural and industrial juices in none of the composites. Conclusions: Natural and industrial juices can affect the surface microhardness of composites, which varies depending on the type of composite and the type of juice and immersion time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.