The drivers of critical coronavirus disease 2019 (COVID-19) remain unknown. Given major confounding factors such as age and comorbidities, true mediators of this condition have remained elusive. We employed a multi-omics analysis combined with artificial intelligence in a young patient cohort where major comorbidities were excluded at the onset. The cohort included 47 "critical" (in the intensive care unit under mechanical ventilation) and 25 "non-critical" (in a non-critical care ward) patients with COVID-19 and 22 healthy individuals. The analyses included whole-genome sequencing, whole-blood RNA sequencing, plasma and blood mononuclear cells proteomics, cytokine profiling, and high-throughput immunophenotyping. An ensemble of machine learning, deep learning, quantum annealing, and structural causal modeling were employed. Patients with critical COVID-19 were characterized by exacerbated inflammation, perturbed lymphoid and myeloid compartments, increased coagulation, and viral cell biology. Among differentially expressed genes, we observed up-regulation of the metalloprotease ADAM9. This gene signature was validated in a second independent cohort of 81 critical and 73 recovered patients with COVID-19, and were further confirmed at the transcriptional and protein level as well as by proteolytic activity. Ex vivo ADAM9
We investigate quantum error correction using continuous parity measurements to correct bit-flip errors with the three-qubit code. Continuous monitoring of errors brings the benefit of a continuous stream of information, which facilitates passive error tracking in real time. It reduces overhead from the standard gate-based approach that periodically entangles and measures additional ancilla qubits. However, the noisy analog signals from continuous parity measurements mandate more complicated signal processing to interpret syndromes accurately. We analyze the performance of several practical filtering methods for continuous error correction and demonstrate that they are viable alternatives to the standard ancilla-based approach. As an optimal filter, we discuss an unnormalized (linear) Bayesian filter, with improved computational efficiency compared to the related Wonham filter introduced by Mabuchi [New J. Phys. 11, 105044 (2009)]. We compare this optimal continuous filter to two practical variations of the simplest periodic boxcar-averaging-and-thresholding filter, targeting real-time hardware implementations with low-latency circuitry. As variations, we introduce a non-Markovian ``half-boxcar'' filter and a Markovian filter with a second adjustable threshold; these filters eliminate the dominant source of error in the boxcar filter, and compare favorably to the optimal filter. For each filter, we derive analytic results for the decay in average fidelity and verify them with numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.