Gastric cancer, a leading cause of cancer-related deaths, is a heterogeneous disease. We aim to establish clinically relevant molecular subtypes that would encompass this heterogeneity and provide useful clinical information. We use gene expression data to describe four molecular subtypes linked to distinct patterns of molecular alterations, disease progression and prognosis. The mesenchymal-like type includes diffuse-subtype tumors with the worst prognosis, the tendency to occur at an earlier age and the highest recurrence frequency (63%) of the four subtypes. Microsatellite-unstable tumors are hyper-mutated intestinal-subtype tumors occurring in the antrum; these have the best overall prognosis and the lowest frequency of recurrence (22%) of the four subtypes. The tumor protein 53 (TP53)-active and TP53-inactive types include patients with intermediate prognosis and recurrence rates (with respect to the other two subtypes), with the TP53-active group showing better prognosis. We describe key molecular alterations in each of the four subtypes using targeted sequencing and genome-wide copy number microarrays. We validate these subtypes in independent cohorts in order to provide a consistent and unified framework for further clinical and preclinical translational research.
INTRODUCTION: Immunotherapy targeting the programmed cell death protein–1 (PD-1) axis elicits durable antitumor responses in multiple cancer types. However, clinical responses vary, and biomarkers predictive of response may help to identify patients who will derive the greatest therapeutic benefit. Clinically validated biomarkers predictive of response to the anti–PD-1 monoclonal antibody pembrolizumab include PD-1 ligand 1 (PD-L1) expression in specific cancers and high microsatellite instability (MSI-H) regardless of tumor type. Tumor mutational burden (TMB) and T cell–inflamed gene expression profile (GEP) are emerging predictive biomarkers for pembrolizumab. Both PD-L1 and GEP are inflammatory biomarkers indicative of a T cell–inflamed tumor microenvironment (TME), whereas TMB and MSI-H are indirect measures of tumor antigenicity generated by somatic tumor mutations. However, the relationship between these two categories of biomarkers is not well characterized. RATIONALE: This study assessed the potential for TMB and a T cell–inflamed GEP to jointly predict clinical response to pembrolizumab in >300 patient samples with advanced solid tumors and melanoma across 22 tumor types from four KEYNOTE clinical trials. To assess the individual and joint clinical utility of TMB and GEP, patients were stratified in four biomarker–defined clinical response groups [GEP low and TMB low (GEPlo TMBlo), GEP low and TMB high (GEPlo TMBhi), GEPhi TMBlo, and GEPhi TMBhi] based on predefined cutoffs for TMB and GEP. These patient–defined biomarker groups were further used to guide transcriptome and exome analyses of tumors in a large molecular database [The Cancer Genome Atlas (TCGA)] (n = 6384 tumors) to identify targetable patterns of biology that may modulate response and resistance. RESULTS: TMB and GEP exhibited only modest correlation and were independently predictive of response across the KEYNOTE clinical datasets. We found that objective response rates were strongest in patients with GEPhi TMBhi (37 to 57%), moderate in those with GEPhi TMBlo (12 to 35%) and GEPlo TMBhi (11 to 42%), and reduced or absent in those with GEPlo TMBlo (0 to 9%) (see the figure). Additionally, longer progression–free survival times were seen in patients with higher levels of both TMB and GEP. Findings were comparable when TMB and PD-L1 expression were jointly assessed. Within TCGA database, GEP and TMB again had a low correlation, demonstrating the potential to jointly stratify transcriptomic and genomic features across cancer types. Specific gene expression patterns reflective of TME biology showed significant associations with TMB, GEP, or both. In particular, gene set enrichment analysis identified proliferative and stromal, myeloid, and vascular biology corresponding to specific TMB-defined subgroups within GEPhi tumors. In TMBhi tumors, indication-dependent somatic DNA alterations in key cancer driver genes showed a strong negative association with GEP. CONCLUSION: This analysis shows that TMB and inflammatory biomarkers (T cell–in...
Clinical studies support the efficacy of programmed cell death 1 (PD-1) targeted therapy in a subset of patients with metastatic gastric cancer (mGC). With the goal of identifying determinants of response, we performed molecular characterization of tissues and circulating tumor DNA (ctDNA) from 61 patients with mGC who were treated with pembrolizumab as salvage treatment in a prospective phase 2 clinical trial. In patients with microsatellite instability-high and Epstein-Barr virus-positive tumors, which are mutually exclusive, dramatic responses to pembrolizumab were observed (overall response rate (ORR) 85.7% in microsatellite instability-high mGC and ORR 100% in Epstein-Barr virus-positive mGC). For the 55 patients for whom programmed death-ligand 1 (PD-L1) combined positive score positivity was available (combined positive score cut-off value ≥1%), ORR was significantly higher in PD-L1(+) gastric cancer when compared to PD-L1(-) tumors (50.0% versus 0.0%, P value <0.001). Changes in ctDNA levels at six weeks post-treatment predicted response and progression-free survival, and decreased ctDNA was associated with improved outcomes. Our findings provide insight into the molecular features associated with response to pembrolizumab in patients with mGC and provide biomarkers potentially relevant for the selection of patients who may derive greater benefit from PD-1 inhibition.
PURPOSE Biomarkers that can predict response to anti–programmed cell death 1 (PD-1) therapy across multiple tumor types include a T-cell–inflamed gene-expression profile (GEP), programmed death ligand 1 (PD-L1) expression, and tumor mutational burden (TMB). Associations between these biomarkers and the clinical efficacy of pembrolizumab were evaluated in a clinical trial that encompassed 20 cohorts of patients with advanced solid tumors. METHODS KEYNOTE-028 ( ClinicalTrials.gov identifier: NCT02054806) is a nonrandomized, phase Ib trial that enrolled 475 patients with PD-L1–positive advanced solid tumors who were treated with pembrolizumab 10 mg/kg every 2 weeks for 2 years or until confirmed disease progression or unacceptable toxicity occurred. The primary end point was objective response rate (ORR; by RECIST v1.1, investigator review). Secondary end points included safety, progression-free survival (PFS), and overall survival (OS). Relationships between T-cell–inflamed GEP, PD-L1 expression, and TMB and antitumor activity were exploratory end points. RESULTS ORRs (with 95% CIs) ranged from 0% (0.0% to 14.2%) in pancreatic cancer to 33% (15.6% to 55.3%) in small-cell lung cancer. Across cohorts, median (95% CI) PFS ranged from 1.7 months (1.5 to 2.9 months) to 6.8 months (1.9 to 14.1 months) in pancreatic and thyroid cancers, respectively, and median OS from 3.9 months (2.8 to 5.5 months) to 21.1 months (9.1 to 22.4 months) in vulvar and carcinoid tumors, respectively. Higher response rates and longer PFS were demonstrated in tumors with higher T-cell–inflamed GEP, PD-L1 expression, and/or TMB. Correlations of TMB with GEP and PD-L1 were low. Response patterns indicate that patients with tumors that had high levels of both TMB and inflammatory markers (GEP or PD-L1) represent a population with the highest likelihood of response. Safety was similar and consistent with prior pembrolizumab reports. CONCLUSION A T-cell–-inflamed GEP, PD-L1 expression, and TMB predicted response to pembrolizumab in multiple tumor types. These biomarkers (alone/in combination) may help identify patients who have a higher likelihood of response to anti–PD-1 therapies across a broad spectrum of cancers.
Combination drug therapy is a widely used paradigm for managing numerous human malignancies. In cancer treatment, additive and/or synergistic drug combinations can convert weakly efficacious monotherapies into regimens that produce robust antitumor activity. This can be explained in part through pathway interdependencies that are critical for cancer cell proliferation and survival. However, identification of the various interdependencies is difficult due to the complex molecular circuitry that underlies tumor development and progression. Here, we present a highthroughput platform that allows for an unbiased identification of synergistic and efficacious drug combinations. In a screen of 22,737 experiments of 583 doublet combinations in 39 diverse cancer cell lines using a 4 by 4 dosing regimen, both wellknown and novel synergistic and efficacious combinations were identified. Here, we present an example of one such novel combination, a Wee1 inhibitor (AZD1775) and an mTOR inhibitor (ridaforolimus), and demonstrate that the combination potently and synergistically inhibits cancer cell growth in vitro and in vivo. This approach has identified novel combinations that would be difficult to reliably predict based purely on our current understanding of cancer cell biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.