Demand response (DR) programs were usually designed to provide load peak reduction and flatten the load curve, but in the context of rapid adoption of emerging technologies, such as smart metering and sensors, load flexibility will address current trends and challenges (such as grid modernization, demand, and renewables growth) encountered by the evolving power systems. The uncertainty of the renewable energy sources (RES) and electric vehicle (EV) fleet operation has increased the importance of load flexibility that can be managed to provide more support for the stable operation of power systems, including balancing. In this paper, we propose a data model to handle load flexibility and take advantage of its benefits. We also develop a methodology to collect and organize data, combining the consumption profile with several auxiliary datasets such as climate characteristics of the location, independent system operator (ISO) to which the consumer is affiliated, geographical coordinates, assessed flexibility coefficients, tariff rates, weather forecast for day-ahead flexibility forecast, DR-enabling technology costs, and DR programs. These multiple features are stored into a flexibility relational database and NoSQL database for large consumption data collections. Then, we propose a data processing flow to obtain valuable insights from numerous .csv files and an algorithm to assess the load flexibility using large residential and commercial profile datasets from the USA, estimating plausible values of the flexibility provided by two categories of consumers.
This paper is making an in depth presentation of energy consumption analyze and monitoring in real time and near real time within Internet of Things conditions. Concepts such as energy consumption, Demand Side Management, real time and near real time monitoring, Internet of Things and concrete tools for this kind of an implementations will be described. The main purpose of the paper is to describe the context of a real-life situation, where the monitoring of energy consumption in real time represent a challenge which may bring in the end noticeable benefits and propose the architecture and technologies for resolving such of a challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.