We examined the ability of adenoviral-mediated expression of the melanoma differentiation associated gene-7 (Ad-mda-7), to radiosensitize non-small cell lung cancer (NSCLC) cell lines (A549 (wt-TP53/wt-RB1) and H1299 (del-TP53/wt-RB1)), and normal human lung fibroblast (NHLF) lines (CCD-16 and MRC-9). Results of clonogenic assays indicated that Ad-mda7 enhanced the radiosensitivity of the NSCLC cells independent of their TP53 gene status. On the other hand, the NHLF cell lines seemed to be relatively resistant to the cytotoxic effects of Ad-mda7 and were not radiosensitized compared with the NSCLC cells. We further examined the basis for this difference in the ability of Ad-mda7 to radiosensitize NSCLC cells compared with normal cells. Radiation-induced apoptosis was restored in the NSCLC lines, but not in the normal lines. Western blot analysis revealed that Ad-mda7 enhances radiosensitivity independently of any ability to upregulate the expression of Fas or Bax in NSCLC cells. Further analysis indicated that phosphorylated c-Jun expression was increased by Ad-mda7 in both A549 and H1299 cells, but not in CCD-16 cells. These results support the use of gene replacement with Ad-mda7 in combination with radiotherapy for the treatment of NSCLC.
2-Chloro-2′-deoxyadenosine (CldAdo) and 9-beta-D-arabinosyl-2- fluoroadenine (F-ara-A) have shown marked activity in the treatment of indolent lymphoid malignancies. Based on the susceptibility of various lymphocyte populations to apoptosis, we investigated whether CldAdo or F-ara-A would induce this process in lymphocytes from patients with chronic lymphocytic leukemia (CLL). In vitro exposure of leukemic lymphocytes to CldAdo or F-ara-A for 24 to 72 hours elicited features of apoptosis visible by light and electron microscopy. Analysis of DNA integrity showed DNA cleavage into nucleosomal-sized multimers. Using a quantitative assay, drug-induced DNA fragmentation was both time and dose dependent. Inhibition of active macromolecular synthesis did not prevent drug-induced fragmentation; however, both drug-induced and spontaneous DNA fragmentation were prevented by intracellular calcium chelation. In vitro culture with phorbol ester generally decreased drug- induced DNA cleavage. After prolonged incubation, CLL cells exhibited spontaneous cleavage; albeit, at significantly lower rates than drug- treated cells. Heterogeneity was observed for spontaneous and drug- induced DNA fragmentation and was significantly lower in B-leukemic cells obtained from patients with high-risk and refractory disease. We conclude that CldAdo and F-ara-A are potent inducers of apoptotic death in CLL and that this feature correlates with the disease status.
Summary The ability of the sister chromatid exchange (SCE) assay to detect heterogeneity in intrinsic radiation sensitivity was investigated. In order to identify tumour cell subpopulations, frequency histograms of cis-diamminedichloroplatinum (II) (cPt)-induced SCEs were generated and compared to those from cultures that had been irradiated 96h before drug treatment. The results suggested that subpopulations with different radiosensitivities were present in nine of 18 human primary tumour cell cultures evaluated. When the effects of prior irradiation on the subsequent X-ray survival response and on cPt-induced SCE frequency histograms were compared, a good correlation was obtained between the two assays regarding the prediction of heterogeneity in radioresponse. These results suggest that primary cultures can contain both radiationsensitive and radiation-resistant cells, and thus heterogeneity in intrinsic radiosensitivity may exist in human solid tumours.
We evaluated the effect of H-ras oncogene expression on resistance to ionizing radiation in cultured rat fibroblasts. The Rat-1 cell line, and two Rat-1 derivatives, MR4 and MR7, carrying a ZN-regulatable metallothionein-rasT24 fusion gene were used to study the effects of the ras oncogene on radiation sensitivity. Cells were irradiated with a 137Cs source (450 cGY/min) in the presence or absence of ZnSO4. Multiple cell survival studies did not show an appreciable difference in sensitivity to radiation among the lines in the presence or absence of ras oncogene expression.
In these studies we have used wild-type Chinese hamster ovary cells (AA8) and a mutant cell line (UV-41) deficient in excision repair to compare sister chromatid exchange (SCE) induction after X irradiation under oxic and hypoxic conditions. X irradiation of AA8 cells under oxic conditions induced only a slight increase in SCEs, whereas at each dose tested a significantly greater number of SCEs were induced in hypoxic cells. When AA8 cells were X-irradiated and the addition of bromodeoxyuridine (BrdU) was delayed for 20 h to allow DNA lesions to be repaired, the levels of SCEs detected in both oxic and hypoxic cells returned to background levels. X irradiation of UV-41 cells also induced only a slight increase of SCEs in oxic cells, whereas a significant number of SCEs were induced in hypoxic cells. However, in contrast to results with AA8 cells, when hypoxic UV-41 cells were X-irradiated and the addition of BrdU was delayed for 20 h, the number of SCEs remained significantly above background levels. In combination with previous alkaline elution data, these results are consistent with the possibility that DNA-protein crosslinks are responsible for the SCEs induced by X irradiation of hypoxic cells. Irrespective of the mechanism(s) involved, the data presented suggest that the SCE assay may potentially aid in the detection of hypoxic tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.