Overexpression of the melanoma di erentiation associated gene-7 (mda-7) in vitro results in suppression of lung cancer cell proliferation. However, the ability of MDA-7 to suppress lung cancer in vivo has not been previously demonstrated. In this study, we investigated the possibility of inducing overexpression of the mda-7 gene in human non-small cell lung carcinoma cells in vivo and its e ects on tumor growth. Adenovirus-mediated overexpression of MDA-7 in p53-wild-type A549 and p53-null H1299 subcutaneous tumors resulted in signi®cant tumor growth inhibition through induction of apoptosis. In addition, decreased CD31/PECAM expression and upregulation of APO2/TRAIL were observed in tumors expressing MDA-7. In vivo studies correlated well with in vitro inhibition of lung tumor cell proliferation and endothelial cell di erentiation mediated by Ad-mda7. These data demonstrate that Ad-mda7 functions as a multi-modality anti-cancer agent, possessing both, pro-apoptotic and anti-angiogenic properties. We demonstrate for the ®rst time the potential therapeutic e ects of Ad-mda7 in human lung cancer.
We examined the ability of adenoviral-mediated expression of the melanoma differentiation associated gene-7 (Ad-mda-7), to radiosensitize non-small cell lung cancer (NSCLC) cell lines (A549 (wt-TP53/wt-RB1) and H1299 (del-TP53/wt-RB1)), and normal human lung fibroblast (NHLF) lines (CCD-16 and MRC-9). Results of clonogenic assays indicated that Ad-mda7 enhanced the radiosensitivity of the NSCLC cells independent of their TP53 gene status. On the other hand, the NHLF cell lines seemed to be relatively resistant to the cytotoxic effects of Ad-mda7 and were not radiosensitized compared with the NSCLC cells. We further examined the basis for this difference in the ability of Ad-mda7 to radiosensitize NSCLC cells compared with normal cells. Radiation-induced apoptosis was restored in the NSCLC lines, but not in the normal lines. Western blot analysis revealed that Ad-mda7 enhances radiosensitivity independently of any ability to upregulate the expression of Fas or Bax in NSCLC cells. Further analysis indicated that phosphorylated c-Jun expression was increased by Ad-mda7 in both A549 and H1299 cells, but not in CCD-16 cells. These results support the use of gene replacement with Ad-mda7 in combination with radiotherapy for the treatment of NSCLC.
Our data indicate that therapy using Ad5/CMV/p53 and irradiation in combination is more effective than either treatment when used alone on NSCLC cells, is not limited to cells with defective endogenous p53, and does not enhance the radiosensitivity of normal cells.
We examined the in¯uence of adenovirus-mediated wildtype p16 INK4a (Ad/p16) expression on the radiation sensitivity of NSCLC cell lines, all of which lacked constitutive p16 INK4a but each of which varied in p53 status: A549 (7p16 INK4a /+pRb/wt-p53), H322 (7p16 INK4a /+pRb/mt-p53), and H1299 (7p16 INK4a / +pRb/deleted-p53). The in vitro clonogenic survival results indicate that Ad/p16 enhanced the radiosensitivity of A549 but not H322 or H1299. Further analysis indicated that the apoptosis induced by combination therapy using Ad/p16 plus irradiation was dependent on the endogenous p53 status of the cancer cells. We performed Western blotting to analyse the p53 protein expression of A549 cells treated with either Ad/p16 or Ad/Luc. Endogenous p53 protein levels were higher in A549 cells transfected with Ad/p16 than in those transfected with Ad/Luc. Furthermore, when wt-p53 protein expression was restored in H1299 using Ad/ p53, Ad/p16 stabilized p53 protein expression and radiosensitized the cells. These results suggest that Ad/ p16-induced stabilization of p53 protein may play an important role in Ad/p16 mediated radiosensitization by enhancing or restoring apoptosis properties. Thus, Ad/ p16 plus radiation in combination may be a useful gene therapy strategy for tumors that have wt-p53 but nonfunctional p16 INK4a . Oncogene (2000) 19, 5359 ± 5366.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.